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ABSTRACT 

 
This study utilizes publicly available electric vehicle (EV) data from the California Energy 

Commission to investigate the potential impact of EVs on air quality in California from 2010 to 

2021. It also examines how changes in air pollution levels resulting from EV adoption affect 

respiratory health. First, a fixed-effects panel regression model is employed to analyze the 

quantitative relationship between air quality and electric vehicle usage. The results indicate that, 

under the current electricity generation structure, large-scale adoption of electric vehicles could 

improve air quality. Furthermore, using the ratio of electric vehicles to gasoline-powered vehicles 

as an instrumental variable, a panel regression with a Poisson control model is applied to assess 

the correlation between changes in air quality caused by widespread EV adoption and the 

prevalence of respiratory diseases. The Generalized Method of Moments (GMM) is also used as a 

robustness check. This study demonstrates that broad implementation of electric vehicles is 

expected to significantly enhance air quality in California and reduce health risks associated with 

air pollution. 
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Introduction  

This paper explores the relationship between the widespread adoption of electric vehicles and the 

resulting improvements in air quality, with a particular emphasis on the implications for public 

health. Our objective is to determine whether there is a statistically significant decline in the 

incidence rates of diseases strongly associated with air quality, attributable to the reduction of 

emissions from vehicular traffic. In this chapter, we continue to utilize the data and samples 

established in the previous analysis while incorporating additional health-related metrics. To 

investigate the potential health outcomes linked to electric vehicles in California over the past 

decade, we employ a Poisson control function model in conjunction with an instrumental variable 

approach. The findings suggest that the improvements in air quality resulting from the adoption of 

electric vehicles are associated with a significant reduction in the incidence of respiratory diseases. 

This indicates that, over the long term, electric vehicles not only yield substantial environmental 

benefits but also promote healthier living conditions for individuals. The following section 

presents a literature review that examines the health benefits derived from environmental 

improvements associated with electric vehicles in California and China in recent years. 

 

Li et al. (2024) simulated the changes in air pollutant concentrations and public health 

under a scenario in which Los Angeles adopts 100% renewable electricity by 2045. The article 

indicates that, while ensuring a reliable power supply, the city's PM2.5 concentration is projected 

to decrease by 8% with the adoption of 100% renewable electricity. Simultaneously, assuming 

consistent meteorological conditions, the ozone concentration is expected to increase by 5% 

compared to 2012. These changes could potentially yield up to $1.4 billion in public health benefits 

for Los Angeles by 2045. Hata et al. (2025) employed numerical weather prediction techniques to 

evaluate the alterations in the urban heat island (UHI) phenomenon within the Greater Tokyo Area 

(GTA) after the integration of BEVs. The results indicated that the introduction of BEVs would 

lead to a reduction in the peak local temperature in the GTA by 0.25°C. This research implies that 

the widespread adoption of BEVs has beneficial implications for public health. A substantial body 

of literature has emerged examining the relationship between electric vehicles and public health, 

particularly in the context of the COVID-19 pandemic that began in 2020. Considering traffic 

restrictions and a marked decrease in travel, numerous studies have endeavored to investigate this 

connection through simulations, modeling, and empirical research methodologies. The subsequent 



 
 

2 
 

two articles specifically address the interplay between electric vehicles and health in China in the 

aftermath of the pandemic. The first article analyzes the effects of COVID-19 on the electric 

vehicle sector, while the second article evaluates the implications of electric vehicles for public 

health and air quality. Wen et al. (2021) elucidate the diverse obstacles and prospects linked to the 

advancement of EVs in China. The authors conduct an analysis of emerging trends and observe a 

short-term decline in electric vehicle sales attributable to the COVID-19 pandemic. Nevertheless, 

they argue that this scenario may ultimately catalyze increased demand for electric vehicles in the 

long term, especially for larger models characterized by superior performance, which are likely to 

witness even greater demand. Horton et al. (2021) employ a specialized model to simulate the 

interaction between meteorological conditions and atmospheric chemistry, with the goal of 

evaluating the potential benefits of adopting electric vehicles during periods of extreme pollution 

in China. The findings reveal that heavy-duty electric vehicles (HD EVs) and light-duty electric 

vehicles (LD EVs) each offer distinct environmental and health benefits. Specifically, the 

widespread implementation of HD EVs is linked to a reduction in nitrogen oxides and fine 

particulate matter; however, this transition will not lead to a decrease in carbon dioxide emissions 

unless there is a corresponding increase in zero-emission electricity generation. In contrast, while 

the extensive adoption of LD EVs consistently results in a reduction of greenhouse gas emissions, 

it does not significantly improve air quality. Moreover, the economic benefits associated with LD 

EVs are nearly twice as significant as those related to HD EVs. The study concludes that although 

moderate public health benefits may be achieved through the adoption of electric vehicles to 

mitigate severe winter pollution, it emphasizes the need for continued reductions in emissions from 

electricity production as a more critical priority. 

 

Background  

Historical Health Consequences of Air Pollution 

A significant risk factor associated with air pollution is its contribution to the development of 

various health complications, including respiratory infections, cardiovascular disease, chronic 

obstructive pulmonary disease, stroke, and lung cancer. Health issues resulting from air pollution 

may be manifested as respiratory difficulties, asthma, coughing, wheezing, and the exacerbation 
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of pre-existing respiratory and cardiopulmonary disorders. 1 Air pollution is widely recognized as 

a major public health risk that poses a persistent threat to human life. This issue has been 

extensively studied by both medical researchers and economists. The following seven articles 

illustrate the association between air pollution and mortality rates. The countries involved in the 

research include China, the United States, Brazil, Colombia, and several other nations worldwide. 

Yin et al. (2017) conducted an analysis to estimate the correlation between air pollution and 

mortality rates by examining daily death counts across 38 cities in 27 provinces of China. The 

research encompasses fatalities from all causes, including both cardiovascular and non-

cardiovascular diseases. The results revealed that an increase of 10 micrograms per cubic meter in 

PM10 concentration on a given day was associated with a 0.44% rise in daily mortality (95% 

confidence interval: 0.30% to 0.58%). Additionally, the findings indicate that air pollution exerts 

the most pronounced effect on mortality due to cardiovascular diseases. Deryugina et al. (2019) 

investigate the correlation between PM2.5 concentrations and mortality rates using healthcare 

insurance data from the United States. The authors employ variations in local wind direction as an 

instrumental variable to evaluate air pollution levels and incorporate machine learning techniques 

to quantify the years of life lost due to pollution exposure. Their results reveal that air pollution 

exerts the most significant impact on mortality among the elderly population. Aron et al. (2024) 

provide evidence that individuals diagnosed with COPD, along with various personal risk factors, 

may exhibit increased susceptibility to the adverse effects of acute outdoor air pollution. This 

research employs data from 25 metropolitan areas across the United States, spanning the years 

2016 to 2019, to investigate the relationship between winter air pollution and mortality rates among 

COPD patients. The findings suggest that the risk of mortality is projected to increase by a factor 

of 1.05 (95% CI, 1.02-1.09) for each 10 µg/m³ rise in winter PM2.5 levels. Luben et al. (2023) 

present epidemiological evidence from existing literature that highlights the association between 

short-term exposure to air pollution and infant mortality. Several studies indicate that increased 

exposure to PM10, NO2, SO2, or CO correlates with elevated rates of infant mortality. Stafoggia et 

al. (2023) perform a comprehensive analysis of all-cause mortality data from 1995 to 2020, 

covering 620 cities across 36 countries. This study utilized daily records of air temperature and 

key air pollutants, specifically PM10, PM2.5, NO2, and O3. The results reveal a substantial 

association between air temperature and the influence of air pollutants on mortality rates, with a 

 
1 https://en.wikipedia.org/wiki/Air_pollution 
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particularly marked effect observed during the warmer months. According to Nascimento and 

Gouveia (2024), Exposure to air pollutants has been linked to a heightened risk of mortality from 

non-accidental causes, in addition to an increased likelihood of death from cardiovascular and 

respiratory diseases. Furthermore, individuals residing in areas with lower educational attainment 

and socioeconomic status face a greater risk of death related to air pollution. Gao et al. (2024) 

examine the correlation between fine particulate matter associated with wildfires and mortality 

rates. Their results indicate that exposure to wildfire-related PM2.5 is linked to an increase of 

17.77 deaths per 100,000 individuals (95% CI: 11.12–24.38). Data from the San Joaquin Valley 

(SJV) region in 2016, as reported by Zarate-Gonzalez et al. (2024), indicate that the estimated total 

economic impact of air pollution in this area is approximately $500 million in emergency room 

visits and $220 million in hospitalization expenses. These financial burdens are comprised of four 

key elements: medical expenditures, productivity losses, school absenteeism, and opportunity 

costs. The study further emphasizes that a reduction in pollutant concentrations would significantly 

mitigate the health impacts on SJV residents, potentially preventing nearly 20,000 emergency 

room visits and around 20,000 hospitalizations. The financial savings associated with air pollution-

related costs are delineated into three primary categories: exceeding $46 million for PM2.5, over 

$80 million for nitrogen dioxide (NO2), and nearly $8 million for ozone (O3). 

 

Air pollution can also adversely affect mental and psychological health. 2 Chen et al. (2024) 

investigate a study examining the quantitative relationship between air pollution and mental health 

disorders. The research utilized data from the China Family Panel Studies, which are conducted 

between 2014 and 2015, encompassing a sample of 12,615 urban residents. The results indicated 

a significant positive correlation between levels of air pollution and the prevalence of mental 

disorders. F. Chen et al. (2023) perform an empirical investigation into the correlation between air 

pollution and the mental health of the elderly population. This study employs mental health data 

obtained from the China Health and Nutrition Survey, along with urban-level air pollution metrics. 

The findings reveal a significant deterioration in the mental health of older adults in reaction to 

increasing concentrations of air pollutants. Table 1 presents recent literature on the relationship 

 
2  https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/impact-of-air-pollution-on-mental-
health-signal-1 
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between health and air pollution, primarily covering research articles from China and the United 

States. 

 

Table 1 Recent Research Has Focused on the Relationship between Health Outcomes and Air 

Pollution 

Health and air pollution 

Location Topics Papers 

World PM2.5 and health burden (Bu et al., 2021) 

World PM2.5 and its health effects (Feng et al., 2016) 

China Willingness to pay for clean air in China (Freeman et al., 2019) 

China PM2.5 significantly increases the incidence and 

mortality of cardiovascular and respiratory 

diseases 

(Pui et al., 2014) 

China Health burden and PM2.5 (Song et al., 2017) 

Czech PM2.5 elevates the incidence of respiratory 

diseases 

(Šulc et al., 2022) 

USA Costs of air pollution (Zarate-Gonzalez et al., 2024) 

China Air pollution on mental illness (S. Chen et al., 2024) 

China Effect of PM2.5 on the mortality of cardiovascular 

diseases 

(Zhu et al., 2024) 

USA Health and climate benefits of electric school 

buses 

(Choma et al., 2024) 

USA Air pollution and COVID-19 mortality (X. Wu et al., 2020) 

China Particulate air pollution and mortality (Yin et al., 2017) 

China Air pollution and mental health (F. Chen et al., 2023) 

USA The influence of air pollution on mortality rates 

and healthcare costs. 

(Deryugina et al., 2019) 

USA The relationship between air pollution and low 

birth weight. 

(Gong et al., 2023) 

World Air pollution and infant mortality (Luben et al., 2023) 

World Joint effect of heat and air pollution on mortality (Stafoggia et al., 2023) 

Brazil Air pollution and mortality (Nascimento & Gouveia, 2024) 

Brazil PM2.5 and cardiovascular mortality (Gao et al., 2024) 

Colombia COPD associated with air pollution (Herrera Lopez et al., 2025) 

Netherlands COPD prevalence, incidence, and survival (Afonso et al., 2011) 



 
 

6 
 

USA PM2.5 associated with mortality (Aron et al., 2024) 

 

Potential Health Implications Related to the Implementation of Electric Vehicles 

Some scholarly articles have examined health research pertinent to electric vehicles. In this context, 

we present a selection of articles that specifically address electric vehicles within the United States, 

accompanied by analogous studies from various international contexts. Kazimi (1997) conducted 

an analysis of the total emissions produced by new energy vehicles in the Los Angeles region, 

examining various pricing scenarios from three decades prior. Utilizing a dynamic 

microsimulation model, the author assessed the impact of price reductions for alternative fuel 

vehicles on total emissions. The results indicated that the implementation of compressed natural 

gas vehicles, methanol vehicles, and electric vehicles resulted in annual health benefits estimated 

to be between $20 million and $120 million, and between $3.5 million and $70 million, 

respectively. Choma et al. (2024) examine the potential impact of electric school buses in the 

United States on reducing adult mortality rates linked to PM2.5 exposure and mitigating the risk 

of asthma in children, alongside the associated health benefits. The authors further assess the 

environmental advantages stemming from a decrease in greenhouse gas emissions. The findings 

indicate that substituting each diesel school bus with an electric counterpart in the U.S. as of 2017 

could result in an overall benefit of $84,200 per bus. This total benefit is comprised of estimated 

climate benefits amounting to $43,800 and health benefits totaling $40,400 per bus.  

 

The following six articles explore the impact of electric vehicles on public health in the 

United States. Some articles highlight the positive health outcomes linked to electric vehicles, 

while others offer a more balanced perspective. A study comprehensively assesses the impact of 

BEVs adoption. It employs a computable general equilibrium model to evaluate the effects of 

various scenarios. Three key factors were considered: the levels of subsidies, financial incentives 

provided to manufacturers, as well as the costs associated with fuel., while also accounting for 

enhancements in the productivity of battery manufacturing for BEVs. The results show that 

subsidies significantly influence both GDP and BEVs adoption. Although BEVs adoption 

contributes to a reduction in tailpipe emissions, non-tailpipe emissions may increase due to 

enhanced productivity or increased manufacturing activities resulting from subsidies, potentially 

offsetting the reductions in tailpipe emissions either partially or entirely. Therefore, to achieve the 
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anticipated reduction in overall emissions, subsidy policies should be integrated with initiatives 

promoting green manufacturing and renewable energy generation (Z. Chen et al., 2021). A 

research investigation examines three dimensions of the economic implications associated with 

electric vehicles: the individual incentives for their adoption, the external benefits they provide, 

and the most effective policies for promoting their use. The findings suggest that as the electricity 

grid undergoes a transition from reliance on coal and experiences a rise in the proportion of 

renewable energy sources, the benefits of reduced pollution attributable to electric vehicles will 

become more pronounced, particularly in the Midwest region of the United States, where coal 

remains a significant energy source. Therefore, as the electricity grid becomes increasingly 

sustainable, it is advisable to enhance subsidies aimed at environmental protection (Rapson & 

Muehlegger, 2023). A recent study examines the emissions of PM2.5 and the associated health 

impacts resulting from a large-scale transition to electric vehicles (EVs) across various states in 

the United States, as well as in the fifty most populous metropolitan statistical areas (MSAs). The 

findings suggest that, compared to the current vehicle market framework, the adoption of EVs 

could lead to a reduction in premature mortality rates by approximately 10%. The study highlights 

that the electrification of vehicles in the Western and Northeastern regions would provide more 

substantial health and climate mitigation benefits. Furthermore, if a zero-emission and fully 

renewable energy grid is established, EVs would be significantly cleaner and more 

environmentally sustainable than traditional gasoline vehicles. The authors also indicate that 

vehicle electrification could help alleviate health disparities. They advocate for the widespread 

implementation of EVs in conjunction with a cleaner energy grid, arguing that vehicle 

electrification is the most effective strategy for states aiming to improve public health outcomes 

(Singh et al., 2024). In order to elucidate the numerous advantages associated with electric vehicles, 

a comprehensive study employs a substantial dataset to quantify these benefits. The findings 

indicate that the economic returns of electric vehicles, as assessed through cost-benefit analyses, 

are frequently linked to factors such as human health, air quality, and environmental sustainability 

(Malmgren, 2016). A recent study investigates the influence of real-world electric vehicle (EV) 

sales on health impact assessments (HIA) and evaluates the effects of ZEV regulations on 

childhood asthma. Utilizing data from the United States spanning from 2013 to 2019, the research 

analyzes the relationship between EV and non-EV vehicle sales and fleets, as well as their impact 

on the incidence and prevalence of asthma, employing generalized linear mixed models for 
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analysis. The findings suggest that the sale of new EVs is associated with a decrease in asthma 

cases; specifically, it is estimated that one case of asthma can be prevented for every 264 new EVs 

sold (95% CI: 113-401). Furthermore, when EV sales account for 21.4% of the annual market 

share previously held by non-EV sales, there is significant potential to prevent new cases of 

childhood asthma attributable to new vehicle sales (Gujral et al., 2025). Nevertheless, some articles 

remain skeptical about the current environmental benefits of electric vehicles, including the one 

mentioned below. A study finds that, regardless of whether the vehicle is fully electric or a plug-

in hybrid, whether the household has one car or multiple cars, and regardless of location within or 

outside of California, the annual mileage of electric vehicles is significantly lower than that of 

gasoline cars. This discovery indicates that the present environmental advantages of EVs are not 

as significant as previously expected (Davis, 2019). 

 

There are five additional articles discussing electric vehicles and their environmental 

impact in Germany, Italy, India, and other countries, as well as their research on health-related 

aspects. A study examining electric vehicles in India evaluates their overall influence on the power 

grid. The analysis employs a model based on battery electric vehicle (BEV) adoption rates of 5% 

and 15% in New Delhi. The findings indicate that, firstly, the proliferation of BEVs would enhance 

India's renewable energy capacity. Secondly, it is projected that carbon dioxide emissions from 

BEVs in India would decrease by approximately 40% compared to conventional vehicles. Lastly, 

to fully realize the synergistic benefits of electric vehicles, it is essential for the Indian government 

to align efforts related to the expansion of electric vehicles, the establishment of a national smart 

grid, and the sustainability of the country's renewable energy resources (Gopal et al., 2015). A 

comparative analysis is conducted to evaluate the reduction of carbon dioxide emissions 

attributable to electric vehicles in Italy and Germany, considering comparable levels of renewable 

energy integration. The authors noted that achieving a significant reduction in carbon dioxide 

emissions in Germany would require a substantial increase in renewable energy capacity. 

Conversely, Italy, despite having a lower capacity for renewable energy, stands to benefit from the 

electrification of its transportation sector (Bellocchi et al., 2019). In a chapter titled “Future of 

Road Transportation,” the author explores the various challenges and limitations associated with 

electric vehicles (EVs) and potential strategies for addressing these issues. The current challenges 

confronting electric vehicles encompass several key areas: the source of charging energy, which 
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significantly influences the overall environmental footprint of EVs; restricted driving range; 

prolonged charging times; concerns regarding battery recycling and environmental contamination; 

inadequate charging infrastructure; the risk of grid overload; and the high costs associated with the 

purchase and maintenance of electric vehicles (Kantumuchu, 2023). This research endeavor seeks 

to assess the empirical correlation between the utilization of BEVs and HEVs and their effects on 

public health. A thorough literature review was conducted across six prominent databases, 

resulting in the identification of 897 peer-reviewed articles published over a 35-year period, from 

1990 to 2024. The findings reveal that 52 articles satisfy the inclusion criteria, with 94% of these 

focusing on the transition to electric vehicles. Among the selected studies, 41 specifically examine 

premature mortality and monetized health outcomes, with only one being an observational study; 

the remainder are empirical in nature. Significantly, 98% of the studies indicate a beneficial impact 

of electric or hybrid electric vehicles on health (Pennington et al., 2024). A recent study analyzed 

38 scholarly articles concerning electric vehicles, which include BEVs, PHEVs, and HEVs, 

published from 1990 to 2023. Employing meta-regression techniques, the research evaluates the 

impact of various determinants on the adoption of electric vehicles. The results highlight four 

primary factors that exert a global influence: user perception, user characteristics, environmental 

awareness, and barriers to adoption. Furthermore, it is observed that European nations exhibit the 

most pronounced spatial effects. In light of the substantial greenhouse gas emissions produced by 

China and India, the authors advocate for the large-scale adoption of electric vehicles in these 

countries, along with an increase in the share of renewable energy in regions that promote electric 

vehicle utilization (Y. Wang & Witlox, 2025). Table 2 presents an overview of recent studies 

examining the association between electric vehicles and health outcomes, alongside their influence 

on air quality, with a particular focus on research conducted within the United States. The 

prevailing agreement among scholars indicates that electric vehicles contribute positively to public 

health. For example, EVs play a beneficial role in the environment (Kazimi, 1997; He et al., 2019; 

Wen et al., 2021; Horton et al., 2021; Singh et al., 2024). EVs may have negative consequences 

that undermine their environmental benefits (Davis, 2019; Y. Li et al., 2024; Z. Chen et al., 2021). 

 

Table 2 Recent Studies Have Examined the Relationship between Health Outcomes and Air 

Pollution in the Context of Electric Vehicles 

Health, air pollution and electric vehicles 
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Location Yes or no Topics Papers 

China No Health impact and 

environmental equity 

(Ji et al., 2012) 

Taiwan Yes Health benefits (Lin et al., 2020) 

India Yes Air, health benefits and equity (Peshin et al., 2024) 

California Yes EVs and impact on health  (Limoochi & Rodriguez, 2024) 

Japan Yes EVs, temperature and health (Hata et al., 2025) 

California Neutral Air quality and public health co-

benefits of 100% renewable 

electricity adoption 

(Y. Li et al., 2024) 

California Yes Environmental Impact (Kazimi, 1997) 

China, USA, and 

Germany 

Yes Economic and Climate Benefits (He et al, 2019) 

China Yes Impacts of COVID-19 on the 

electric vehicle industry 

(Wen et al., 2021) 

China Yes EVs impact public health and air 

pollution 

(Horton et al., 2021) 

USA Yes EVs and mortality risks of 

PM2.5 emissions 

(Singh et al., 2024) 

USA Yes Societal benefits of EVs (Malmgren, 2016) 

USA Yes Impact of EVs sales on 

childhood asthma 

(Gujral et al., 2025) 

USA Neutral Environmental and economic 

impact of EVs 

(Z. Chen et al., 2021) 

USA Yes Economics of EVs (Rapson & Muehlegger, 2023) 

USA Neutral Electric vehicles offer limited 

environmental benefits. 

(Davis, 2019) 

World Yes EVs and health (Pennington et al., 2024) 

Germany and Italy Yes role of EVs towards low-carbon 

energy systems 

(Bellocchi et al., 2019) 

India Yes BEVs can reduce greenhouse 

gas emissions and make 

renewable energy cheaper 

(Gopal et al., 2015) 

World Yes Challenges and limitations of 

EVs 

(Kantumuchu, 2023) 
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World Yes Global trends in EVs adoption 

and the impact of environmental 

awareness, user attributes, and 

barriers 

(Y. Wang & Witlox, 2025) 

 

 

Data and Variables 

The data utilized in this study is derived from publicly accessible information provided by relevant 

agencies of the United States federal government and the state government of California. It is 

important to note that there are instances of missing data for specific years. The dataset covers a 

time frame from 2010 to 2021 and includes 58 counties within California, excluding Los Angeles 

County, resulting in a total sample size of 684. All data employed in this research is publicly 

available. For a comprehensive description of the dataset, please consult Table 3. For an extensive 

statistical analysis, refer to Table 4.  

 

Health Impact Data  

In this study, we utilize two types of health impact data. The first type is the annual number of 

emergency department visits for COPD among individuals aged 25 years and older in each county 

from 2010 to 2021. The second type is the crude rate of emergency department visits for asthma 

per 10,000 population at the county level over the same 12-year period. Both data are sourced from 

CDC. Table 3 presents a description of both datasets, while Table 4 provides summary statistics.  

 

Table 3 Description of Variables 

Variable Description Source 

COPDVISITS The annual number of emergency department visits for chronic 

obstructive pulmonary disease (COPD) among individuals aged 25 

years and older. 

Centers for 

Disease 

Control and 

Prevention 

ASTHMA The crude rate of emergency department visits for asthma per 

10,000 population. 

Centers for 

Disease 

Control and 

Prevention 
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The following two articles explore the relationships between COPD and age, as well as the 

correlation between COPD and air quality. One article is from the Netherlands, while the other 

originates from Colombia. Afonso et al. (2011) conduct a study examining the prevalence, 

incidence, and lifetime risk of COPD within the general population. The researchers analyze data 

from individuals aged 40 and older, sourced from the Dutch Integrated Primary Care Information 

(IPCI) database, employing a two-step validation algorithm to identify cases of COPD. Their 

findings reveal a significant increase in the incidence of COPD with advancing age, with a notably 

higher incidence observed in males compared to females. Herrera Lopez et al. (2025) present 

evidence suggesting that the incidence of exacerbations in COPD among patients residing in 

Bogotá is significantly correlated with prolonged exposure to elevated concentrations of nitrogen 

dioxide (NO2). 

 

Table 3 Summary Statistics 

Variable Definition Mean Standard 

Deviation 

Minimum Maximum 

Dependent Variables 

COPDVISITS10K Annual number of emergency 

department visits for COPD per 

10,000 population 

48.042 27.146 0 163.254 

lnCOPDVISITS10K Log of annual number of 

emergency department visits for 

COPD per 10,000 population 

3.706 .726 0 5.101 

ASTHMA10K Crude rate of emergency 

department visits for asthma per 

10,000 population 

47.693 11.653 15.8 79.5 

lnASTHMA10K Log of crude rate of emergency 

department visits for asthma per 

10,000 population 

3.831 .272 2.76 4.376 

Instrumental Variables 

RATEV_GAS Ratio between number of EVs 

and number of gasoline vehicles 

.006 .01 0 .064 

TEMP Average temperature in summer 71.907 6.494 56.267 93.6 

TEMPSQUARED Square of temperature 5212.704 960.27 3165.938 8760.96 
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MANUFACTURING Percentage by employment 2.315 1.731 0 9.95 

WILDFIRENO Number of Fires 55.067 55.398 0 262 

PRECIPITATION Annual precipitation 26.493 18.541 2.06 102.62 

Control Variables      

ln POPULATION Log of population 11.975 1.755 6.954 15.021 

POPDENSITY Population per square mile 654.189 2425.181 1.417 18756.362 

ln INCOME Log of per capita annual 

personal income 

10.763 .335 10.173 12.008 

FARM Percentage by employment 2.311 2.918 0 14.53 

SERVICE Percentage by employment 30.376 65.848 6.18 594.44 

COVID Dummy variable Covid =1 from 

2020-2021) 

.167 .373 0 1 

AGE65 Percentage of individuals aged 

65 and olde 

16.66 5.302 7.9 31 

RACENONWHITE Proportion of individuals 

identified as belonging to non-

white 

18.555 10.517 4.2 52.3 

UNEMPLOYMENT

RATE 

Unemployment rate 9.453 3.34 2.4 18.4 

HOMEOWNERSHIP Annual homeownership 61.865 7.805 42.58 85.69 

Observation 684 

 

 

Dependent Variables 

The dependent variables in this Poisson control function model comprise two health-related 

indicators: the annual incidence of emergency department visits for  COPD per 10,000 individuals 

and the crude rate of emergency department visits for asthma per 10,000 individuals. As shown in 

Table 4, the mean annual number of COPD visits is 48, with a variation ranging from 0 to 163. 

Similarly, the mean annual number of asthma visits is also 48, with a range from 16 to 80. Figure 

1 illustrates the geographic distribution of asthma emergency room visits per 10,000 individuals 

across California counties in 2010. In contrast, Figure 2 presents the geographic distribution of 

asthma emergency room visits per 10,000 individuals in California counties for the year 2021. A 

comparison of the two figures reveals a noticeable decline in the number of asthma emergency 

room visits in 2021 compared to the figures from 2010. 
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Figure 1 Distribution of asthma visits per 10,000 population by county in California in 2010 

 

The figure above illustrates the geographic distribution of asthma emergency room visits 

per 10,000 individuals across California counties in 2010. It indicates that the number of visits in 

Central California exceeds that in Southern California. 
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Figure 2 Distribution of asthma visits per 10,000 population by county in California in 2021 

 

Figure 2 illustrates the geographic distribution of asthma emergency room visits per 10,000 

individuals across California counties for the year 2021. A comparison with Figure 3.1 indicates a 

significant decline in the number of visits in all counties. The overall trend from 2010 to 2021 

shows a substantial decrease in asthma incidents in California. This phenomenon may be attributed 

to varied factors. Furthermore, the current adoption rate of electric vehicles remains relatively low, 

which may have some short-term impacts. 

 

Explanatory Variables  

The explanatory variables in this model consist of three indicators related to air quality: the median 

Air Quality Index, the maximum annual mean concentration of particulate matter, and the number 

of days on which ozone levels exceed established air quality standards. According to Table 3, The 
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annual average median AQI by county is 47, with a range from 9 to 102. The annual average 

PM2.5 level by county is 9.91 μg/m³, with a range from 3 μg/m³ to 39.10 μg/m³, is greater than the 

EPA's primary annual standard for PM2.5 (9.0 μg/m³). The annual average number of days on 

which ozone levels exceed air quality standards is 18, ranging from 0 to 154. 

 

Instrumental Variables 

There are six instrumental variables as follows: the proportion of electric vehicles to internal 

combustion engine vehicles; the average summer temperature; the square of the average summer 

temperature; the percentage of annual employment in the manufacturing industry; the annual 

number of wildfires; and the average annual precipitation. According to Table 4, the mean county-

level of annual EVs per 10,000 population to the annual holdings of gasoline vehicles per 10,000 

population is 0.006, with a range from 0 to 0.064. Similarly, the annual summer temperature has a 

mean of 71.91°F, with a range from 56.27°F to 93.60°F. The average annual percentage of 

statistics in the manufacturing industry by county is 2.32%, ranging from 0% to 9.95%. The 

average annual number of wildfires is 55, with a range from 0 to 262. The mean annual 

precipitation by county is 26.49 inches, with a range from 2.06 to 102.62 inches. The rationale for 

selecting these variables as instrumental variables will be discussed in the following sections. 

 

Poisson Control Function Model and Hypotheses 

In this research, the two dependent variables under investigation are the annual emergency 

department visits for chronic obstructive pulmonary disease  among individuals aged 25 and older, 

and the crude rate of emergency department visits for asthma per 10,000 population. Both variables 

are classified as count data. It is posited that these counts follow a Poisson distribution, with the 

logarithm of the expected counts being a linear function of the predictor variables. Consequently, 

Poisson regression is employed for this analysis. The Poisson control function (CF) model 

integrates Poisson regression with control function methodology to address endogeneity concerns 

within the model. This approach is particularly beneficial when certain predictor variables in the 

Poisson regression are correlated with the error term, as neglecting to account for this correlation 

can result in biased estimates. The control function method is a strategy designed to mitigate 

endogeneity issues in regression models. Endogeneity arises when predictor variables are 
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correlated with the model's error term, leading to biased coefficient estimates. The control function 

method involves estimating a "first-stage" model for the endogenous variable and subsequently 

incorporating the residuals from this model as a control function in the primary "second stage" 

model (i.e., Poisson regression). By integrating the control function into the main model, the 

correlation between the endogenous variable and the error term is reduced, thereby minimizing 

estimation bias. In the context of the Poisson control function model, the control function (the 

residuals from the first-stage model) is included as a predictor variable within the Poisson 

regression framework. This methodology allows researchers to estimate the causal effects of 

predictor variables on count outcomes while effectively addressing endogeneity. The primary 

advantage of the Poisson control function model is its ability to estimate causal effects in the 

presence of endogeneity. This model offers a robust framework for analyzing count data that may 

be affected by endogeneity issues, thereby broadening the applicability of Poisson regression in 

more complex scenarios. In conclusion, the Poisson control function model serves as a valuable 

tool for analyzing count data when endogeneity is a concern, facilitating the attainment of more 

reliable estimates regarding the relationships between variables.  

 

The following two articles focus on econometric theory and employ control function 

models. Each article outlines the necessary conditions and principles for applying this 

methodology, with a particular emphasis on its effectiveness in addressing endogeneity concerns. 

Lee (2007) investigates a linear triangular simultaneous equation model that incorporates 

conditional quantile restrictions. The author employs the control function approach to address the 

issue of endogeneity and introduces a straightforward two-step estimation procedure. In the first 

step, the residuals obtained from estimating the reduced-form equation for the endogenous 

explanatory variables are calculated. These residuals are then included as an additional explanatory 

variable in a non-parametric format within the primary equation during the second step of the 

estimation process. The analysis assumes that the explanatory variables are observable, and no 

constraints are imposed on the relationship between the residuals and the disturbance terms in the 

equations. Ultimately, the paper's significant contributions lie in establishing the regularity 

conditions necessary for the consistency and asymptotic normality of the two-step estimator. 

Wooldridge (2015) elucidates the application of the control function method to address the 

challenges posed by endogenous explanatory variables (EEVs) in both linear and nonlinear models. 
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A critical prerequisite for the CF method to yield valid interpretations is the acknowledgment that 

the "insertion" method is associated with inconsistent parameter estimates and partial effect 

estimates. 

 

Based on existing literature and logical reasoning, the model is predicated on the following 

two hypotheses:  

Hypothesis One: There is a positive correlation between elevated levels of air pollution and an 

increase in medical visits related to COPD.  

Hypothesis Two: A greater prevalence of electric vehicles is linked to a reduction in the incidence 

of visits associated with respiratory diseases. 

 

Estimation Strategy  

This model is based on the findings from the previous chapter and employs a Poisson control 

function model combined with an instrumental variable approach to obtain regression coefficients 

to minimize bias as much as possible. First, we will use the fixed effects panel regression from 

Chapter Two as the first stage. The independent variables are divided into two main categories: 

instrumental variables and control variables. After obtaining the residuals of the outcome variable 

from the first stage, we will include both the outcome variable and its residuals into the second 

stage of the Poisson regression to obtain the Poisson regression coefficients using instrumental 

variables. Please refer to Equations (1) and (2) for the two-stage regression methodology. 

 

 

𝑃𝑃𝑃𝑃25𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽4𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 +

𝛽𝛽5𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝛽𝛽6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽7𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽8𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +

𝛽𝛽9𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +  𝛽𝛽10𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +  𝛽𝛽11𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽12𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽13𝐴𝐴𝐴𝐴𝐴𝐴65 +

𝛽𝛽14𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽15𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 + 𝛽𝛽16𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 +

𝜇𝜇𝑡𝑡 + 𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖                                                                                    

                                                                                                                                                                                     

(1) 
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𝐿𝐿𝐿𝐿𝐿𝐿(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶10𝐾𝐾𝑖𝑖𝑖𝑖)

= 𝛾𝛾0 + 𝛾𝛾1𝑃𝑃𝑃𝑃25 + 𝛾𝛾2𝑃𝑃𝑃𝑃25𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛾𝛾3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛾𝛾4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝛾𝛾5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛾𝛾6𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +  𝛾𝛾7𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛾𝛾8𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛾𝛾9𝐴𝐴𝐴𝐴𝐴𝐴65

+ 𝛾𝛾10𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛾𝛾11𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

+ 𝛾𝛾12𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝜀𝜀𝑖𝑖𝑖𝑖 
                                                                                                                                                      (2) 

In equation (1), the dependent variables may denote one of three air pollutants: the median 

air quality index (MEDIANAQI), the maximum annual mean concentration of particulate matter 

(PM25), and the frequency of days on which ozone levels surpass established air quality standards 

(O3). The instrumental variables employed in this analysis include six factors: the proportion of 

EVs in relation to gasoline-powered vehicles (RATEV_GAS), the average summer temperature 

(TEMP), the square of the average summer temperature (TEMPSQUARED), the percentage of 

annual employment within the manufacturing sector (MANUFACTURING), the annual count of 

wildfires (WILDFIRESNO), and the average annual precipitation (PRECIPITATION). 

Furthermore, the model incorporates ten control variables: the natural logarithm of annual 

population by county (lnPOPULATION), annual population density by county (POPDENSITY), 

the natural logarithm of per capita annual personal income by county (lnINCOME), the percentage 

of annual employment in the agricultural sector (FARM), the percentage of annual employment in 

the service sector (SERVICE), a binary variable indicating the COVID-19 pandemic (COVID = 1 

for the years 2020-2021), the annual percentage of individuals aged 65 and older (AGE65), the 

proportion of individuals identified as non-white by county (RACENONWHITE), the annual 

unemployment rate by county (UNEMPLOYMENTRATE), and the annual homeownership rate 

(HOMEOWNERSHIP). Additionally, the model accounts for time fixed effects and county fixed 

effects, along with error terms. 

 

In equation (2), the dependent variables are restricted to two specific health outcomes: 

COPDVISITS10K and ASTHMA10K. The primary parameter of interest is the coefficient 𝛾𝛾1 that 

clarifies the association between health outcomes and air pollutants. A negative coefficient implies 

that higher levels of air pollution are advantageous for health, while a positive coefficient suggests 

that air pollution may result in significant health detriment. Since equation (1) already includes a 
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time variable, and adding a time variable to equation (2) produces the same regression results as 

the current equation (2), there is no time variable included in equation (2) here. 

Empirical Results  

This section is divided into six subsections. The results section presents six groups of Poisson 

regression outcomes, along with comparisons of three sets of regression coefficients. It also 

includes Poisson regression results without IVs and the Generalized Method of Moments (GMM) 

results. Each table or figure illustrates results derived from four distinct sets of control variables. 

Additionally, the section includes model diagnostics, endogeneity assessments, model selection, 

robustness check and bootstrapping methods. 

 

Model Diagnostics 

As illustrated in Figure 3, there appears to be a correlation between the annual number of 

emergency department visits for COPD and the median air quality index. This relationship is 

represented by the fitted lines across various counties in California from 2010 to 2021. The left 

fitted line includes data from 58 counties, while the right fitted line includes data from 57 counties, 

excluding Los Angeles County. By comparing the two figures, we observe that the slope of the 

line in the right image is steeper. This suggests that it is reasonable to exclude the data from Los 

Angeles County. Furthermore, both figures indicate that an increase in the median air quality index 

is associated with an increase in the annual number of emergency department visits for COPD, 

suggesting that deteriorating air quality has the potential to cause health damage. 
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Figure 3 Line fitness between annual number of emergency department visits for COPD and 

median AQI by county in California from 2010 to 2021 

 

Endogeneity 

It is always hard to find a legitimate instrument variable. However, it is still worth doing the 

endogeneity test for a potential IV. In this model, the IV regression approach uses six instrumental 

variable correlated with the endogenous predictor variable (air pollutants) but not with the health 

outcome variables. Unfortunately, there is no formal panel data test for exclusion restrictions. 

From Table 5, Table 6, and Table 7, we observe that among the six instrumental variables, the 

ratio of electric vehicles to gasoline vehicles is significant, as is the employment rate in the 

manufacturing sector. Furthermore, the F-test values in the first stage are approximately 5, and the 

regression results from this stage are satisfactory. At the same time, the highly significant residuals 

in the Poisson regression indicate that there is exclusivity between the instrumental variables in 

the first stage and the outcome variable in the second stage. Consequently, we select these six 

instrumental variables because they potentially satisfy both the relevance and exclusivity criteria. 
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Results 

From Table 5, we can see the quantitative relationship between annual emergency room visits for 

two types of respiratory diseases and three indicators of air quality. Using three different methods, 

we obtained different regression coefficients and varying levels of statistical significance. For 

specific information, please refer to the following introduction. The results presented in Table 6, 

which does not employ instrumental variables, indicate that the regression coefficients for COPD 

and median air quality are positive but not statistically significant. The results presented in Table 

7, which employ instrumental variables, indicate that the regression coefficients for COPD and 

median air quality are both positive and highly significant. The fourth group outperforms the others, 

as it has the lowest AIC value. Table 8 presents the results from GMM, where the regression 

coefficients are also positive. Although it is not as significant as the results obtained using 

instrumental variables, it supports the findings presented in Table 7. 
 

 

Table 4 Regression Results for Health Outcomes and Air Pollutants 

Results COPD ASTHMA 

 

AQI 

NO IVs IVs GMM NO IVs IVs GMM 

+ +*** +* + +*** - 

 

PM25 

NO IVs IVs GMM NO IVs IVs GMM 

+*** +*** +*** +*** +*** +*** 

 

O3 

NO IVs IVs GMM NO IVs IVs GMM 

+** +*** +* - +*** +*** 

 

 

Table 5 Poisson Model without IVs between COPD and AQI 

  (1) (2) (3) (4) 

VARIABLES COPDVisits10k COPDVisits10k COPDVisits10k COPDVisits10k 
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MedianAQI 0.00124 0.00264 0.00251 0.00237 

 
-0.00156 -0.00182 -0.0018 -0.00155 

lnPopulation -0.571 -0.919** -0.860** -1.105** 

 
-0.476 -0.422 -0.421 -0.443 

Popdensity 9.31e-05** -0.000106** -8.80E-05 -7.47E-05 

 
-4.41E-05 -5.38E-05 -5.48E-05 -5.32E-05 

COVID -0.284*** -0.397*** -0.380*** -0.351*** 

 
-0.0234 -0.0314 -0.0317 -0.0334 

Age65 0.0249*** -0.00557 -0.00415 -0.00514 

 
-0.00882 -0.00821 -0.00792 -0.00825 

RaceNonWhite -0.0122 -0.0680*** -0.0653*** -0.0697*** 

 
-0.0127 -0.0196 -0.0214 -0.0219 

UnemploymentRate 
 

0.00367 0.00423 0.000649 

  
-0.00608 -0.00584 -0.00594 

lnIncome 
 

1.006*** 0.920*** 0.904*** 

  
-0.218 -0.218 -0.213 

Farm 
  

0.0496 0.039 

   
-0.0462 -0.0425 

Service 
  

0.000820* 0.00058 

   
-0.000487 -0.000474 

Homeownership 
   

-0.00995** 

    
-0.0047 

Observations 672 672 672 672 

Number of county 56 56 56 56 

AIC 4305.5 4251.0 4248.4 4239.4 

BIC 4332.6 4287.1   4293.5   4289.1 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 6 Poisson Model with IVs between COPD and AQI 

  (1) (2) (3) (4) 

VARIABLES COPDVisits10k COPDVisits10k COPDVisits10k COPDVisits10k 

MedianAQI 0.0121*** 0.0200*** 0.0191*** 0.0183*** 

 
-0.00357 -0.00349 -0.00342 -0.00319 

MedianAQI_resid -0.0130*** -0.0200*** -0.0191*** -0.0184*** 

 
-0.00428 -0.00406 -0.004 -0.0037 
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lnPopulation -0.339 -0.728* -0.697 -0.945** 

 
-0.483 -0.426 -0.425 -0.445 

Popdensity 9.22e-05** -0.000123** -0.000109** -9.45e-05* 

 
-4.41E-05 -5.40E-05 -5.43E-05 -5.25E-05 

COVID -0.297*** -0.436*** -0.422*** -0.392*** 

 
-0.0245 -0.0337 -0.0333 -0.0335 

Age65 0.0238*** -0.0157* -0.0143* -0.0148* 

 
-0.00904 -0.00815 -0.00766 -0.00804 

RaceNonWhite -0.00701 -0.0744*** -0.0718*** -0.0757*** 

 
-0.0126 -0.0183 -0.0198 -0.0205 

UnemploymentRate 
 

-0.00284 -0.00219 -0.00544 

  
-0.00578 -0.00557 -0.00579 

lnIncome 
 

1.157*** 1.088*** 1.065*** 

  
-0.211 -0.207 -0.204 

Farm 
  

0.0374 0.0277 

   
-0.044 -0.041 

Service 
  

0.000438 0.000219 

   
-0.000487 -0.000479 

Homeownership 
   

-0.00970** 

    
-0.00454 

Observations 672 672 672 672 

Number of county 56 56 56 56 

AIC 4291.8 4221.5 4222.1 4215.2 

BIC 4323.3 4262.1 4271.7 4269.3 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

 

Figure 4 presents four distinct sets of regression coefficients derived from Table 7. Each 

of these sets exhibits positive coefficients, with values ranging from 0.01 to 0.02. Notably, the 

fourth set with the most control variables is characterized by the lowest AIC value. 
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Figure 4 Regression coefficients between COPDVISITS and MEDIANAQI 

 

Table 7 GMM Model with IVs between COPD and AQI 

  (1) (2) (3) (4) 

VARIABLES lnCOPDVisits10k lnCOPDVisits10k lnCOPDVisits10k lnCOPDVisits10k 

Median AQI 0.00425 0.0161** 0.0132* 0.0127* 

 
-0.00634 -0.00747 -0.00743 -0.0074 

lnPopulation -0.341 -0.43 -0.443 -0.549 

 
-0.336 -0.344 -0.334 -0.353 

Popdensity 7.41E-05 -7.29E-05 -5.17E-05 -4.73E-05 

 
-0.000102 -0.000112 -0.00011 -0.000109 

COVID -0.309*** -0.410*** -0.388*** -0.377*** 

 
-0.0243 -0.0351 -0.036 -0.0375 

Age65 0.0265*** -0.000724 0.00149 0.00148 

 
-0.00579 -0.0092 -0.00907 -0.00903 

RaceNonWhite -0.0163 -0.0506*** -0.0443*** -0.0446*** 

 
-0.0119 -0.0148 -0.0149 -0.0148 

UnemploymentRate 
 

-0.00233 -0.000507 -0.00147 

  
-0.00525 -0.00521 -0.00531 
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.0
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.0
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Regression Coefficients between COPDVISITS and MEDIANAQI
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lnIncome 
 

0.728*** 0.626*** 0.615*** 

  
-0.168 -0.171 -0.171 

Farm 
  

0.0549** 0.0512* 

   
-0.0279 -0.0281 

Service 
  

0.000211 0.000144 

   
-0.00107 -0.00107 

Homeownership 
   

-0.00348 

    
-0.00391 

Observations 684 684 684 684 

Number of county 57 57 57 57 

AIC -410.5 -337.3 -371.1 -374.4 

BIC -383.4 -301.1 -325.9 -324.6 

Standard errors in parentheses                                                                                                            *** p<0.01, ** p<0.05, * p<0.1 

 

The findings presented in Table 9 indicate that, in the absence of instrumental variables, 

the regression coefficients for asthma visits in relation to median air quality are positive yet 

statistically insignificant. Conversely, the results displayed in Table 10, which incorporate 

instrumental variables, reveal that the regression coefficients for asthma visits and median air 

quality are both positive and statistically significant. The second model is favored over the 

alternatives due to its lowest AIC value. Additionally, Table 11 outlines GMM results, which 

demonstrate a negative and statistically insignificant regression coefficient, thereby contradicting 

the outcomes observed in the previous two methodologies. 

 

Table 8 Poisson Model without IVs between ASTHMA and AQI 

  (1) (2) (3) (4) 

VARIABLES Asthma10k Asthma10k Asthma10k Asthma10k 

Median AQI 0.00177 0.000907 0.000862 0.000873 
 -0.00111 -0.000907 -0.000896 -0.000942 

lnPopulation -0.327* -0.105 -0.0934 0.00321 
 -0.187 -0.177 -0.175 -0.174 

Popdensity -0.000154*** -0.000195*** -0.000198*** -0.000202*** 
 -2.22E-05 -2.48E-05 -2.42E-05 -2.46E-05 

COVID -0.227*** -0.229*** -0.226*** -0.235*** 
 -0.00785 -0.00948 -0.0106 -0.0142 
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Age65 -0.0239*** -0.0194*** -0.0189*** -0.0185*** 
 -0.00287 -0.00412 -0.0041 -0.00418 

RaceNonWhite -0.00434 -0.00368 -0.00569 -0.00539 
 -0.00621 -0.00747 -0.00819 -0.00801 

UnemploymentRate  0.0170*** 0.0172*** 0.0183*** 
  -0.00242 -0.00246 -0.00277 

lnIncome  0.125* 0.119 0.125 
  -0.0715 -0.0806 -0.0851 

Farm   0.00141 0.00485 
   -0.0163 -0.0161 

Service   0.000844*** 0.000919*** 
   -0.00024 -0.000261 

Homeownership    0.00307 
    -0.00203 

Observations 684 684 684 684 

Number of county 57 57 57 57 

AIC 3958.4 3935.1 3937.9 3938.9 

BIC 3985.6 3971.3 3983.2 3988.7 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 9 Poisson Model with IVs between ASTHMA and AQI 

  (1) (2) (3) (4) 

VARIABLES Asthma10k Asthma10k Asthma10k Asthma10k 

MedianAQI 0.0149*** 0.0114*** 0.0113*** 0.0114*** 

 
-0.00106 -0.00124 -0.00124 -0.00126 

lnPopulation -0.0181 0.0116 0.0177 0.125 

 
-0.169 -0.185 -0.183 -0.175 

Popdensity -0.000153*** -0.000208*** -0.000212*** -0.000216*** 

 
-1.75E-05 -2.27E-05 -2.17E-05 -2.18E-05 

COVID -0.237*** -0.252*** -0.251*** -0.261*** 

 
-0.00677 -0.00909 -0.00967 -0.0129 

Age65 -0.0252*** -0.0261*** -0.0257*** -0.0254*** 

 
-0.00255 -0.00358 -0.00356 -0.00362 

RaceNonWhite -0.00213 -0.00804 -0.0101 -0.00986 

 
-0.00463 -0.00661 -0.00724 -0.0071 
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UnemploymentRate 
 

0.0126*** 0.0128*** 0.0139*** 

  
-0.00253 -0.00259 -0.00292 

lnIncome 
 

0.219*** 0.223*** 0.229*** 

  
-0.0648 -0.07 -0.0736 

Farm 
  

-0.00455 -0.000875 

   
-0.0146 -0.0146 

Service 
  

0.000592** 0.000673** 

   
-0.000243 -0.000264 

Homeownership 
   

0.00334* 

    
-0.00203 

Observations 684 684 684 684 

Number of county 57 57 57 57 

AIC 3935.3 3924.9 3928.0 3928.8 

BIC 3967.0 3965.6 3977.8 3983.1 

Standard errors in parentheses                                                                                                            *** p<0.01, ** p<0.05, * p<0.1 

 

Figure 5 presents four distinct sets of regression coefficients derived from Table 10. Each 

of these sets exhibits positive values, with coefficients ranging from 0.011 to 0.015. Notably, the 

second set is characterized by the lowest AIC value. 

 

 



 
 

29 
 

 
 

Figure 5 Regression coefficients between ASTHMA and MEDIANAQI 

 

Table 10 GMM Model with IVs between ASTHMA and AQI 

  (1) (2) (3) (4) 

VARIABLES lnAsthma10K lnAsthma10K lnAsthma10K lnAsthma10K 

MedianAQI -0.008 -0.00677 -0.0081 -0.00695 

 
-0.00546 -0.00585 -0.00604 -0.00597 

lnPopulation -0.519* -0.158 -0.157 -0.0203 

 
-0.29 -0.269 -0.272 -0.285 

Popdensity -0.000186** -0.000226** -0.000226** -0.000233*** 

 
-8.74E-05 -8.78E-05 -8.92E-05 -8.83E-05 

COVID -0.265*** -0.265*** -0.257*** -0.271*** 

 
-0.021 -0.0275 -0.0293 -0.0303 

Age65 -0.0222*** -0.0153** -0.0139* -0.0143* 

 
-0.00499 -0.0072 -0.00738 -0.00728 

RaceNonWhite -0.00636 -0.00347 -0.00502 -0.00488 

 
-0.0102 -0.0115 -0.0121 -0.012 

UnemploymentRate 
 

0.0219*** 0.0229*** 0.0238*** 

  
-0.00411 -0.00424 -0.00429 
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lnIncome 
 

0.118 0.092 0.112 

  
-0.132 -0.139 -0.138 

Farm 
  

0.00578 0.01 

   
-0.0227 -0.0227 

Service 
  

0.00121 0.00128 

   
-0.000872 -0.000863 

Homeowership 
   

0.00427 

    
-0.00316 

Observations 684 684 684 684 

Number of county 57 57 57 57 

AIC -614.9 -672.3 -653.8 -668.4 

BIC -587.8 -636.0 -608.5 -618.6 

Standard errors in parentheses                                                                                    *** p<0.01, ** p<0.05, * p<0.1 

 

The results in Table 12 show that without using instrumental variables, the regression 

coefficient for COPD and PM2.5 is both positive and highly significant, with the fourth group 

exhibiting the lowest AIC value. The results in Table 13 indicate that when employing instrumental 

variables, the regression coefficient for COPD and PM2.5 is both positive and highly significant. 

Additionally, the fourth group exhibits the lowest AIC value. Table 14 presents the results from 

GMM, where the regression coefficient is positive and, similar to the results obtained using 

instrumental variables, is highly significant. This supports the findings presented in Table 13. 

 

Table 11 Poisson Model without IVs between COPD and PM25 

  （1） （2） （3） （4） 

VARIABLES COPDVisits10k COPDVisits10k COPDVisits10k COPDVisits10k 

PM25 0.0130*** 0.0131*** 0.0127*** 0.0116*** 

 
-0.00361 -0.00334 -0.00331 -0.00319 

lnPopulation -0.179 -0.684 -0.589 -0.958* 

 
-0.58 -0.561 -0.569 -0.579 

Popdensity 0.000138** -1.37E-05 1.59E-05 4.03E-05 

 
-5.94E-05 -6.75E-05 -6.89E-05 -6.66E-05 

COVID -0.551*** -0.624*** -0.601*** -0.559*** 

 
-0.0341 -0.036 -0.0345 -0.0367 

Age65 0.0279*** 5.99E-05 0.00271 0.00151 
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-0.00982 -0.0114 -0.0108 -0.0113 

RaceNonWhite -0.0409** -0.0854*** -0.0787*** -0.0849*** 

 
-0.0171 -0.0234 -0.026 -0.0267 

UnemploymentRate 
 

0.00111 0.00163 -0.00407 

  
-0.00615 -0.00587 -0.00587 

lnIncome 
 

0.826*** 0.686** 0.651** 

  
-0.277 -0.275 -0.269 

Farm 
  

0.0669 0.0535 

   
-0.0465 -0.0414 

Service 
  

0.000508 8.41E-05 

   
-0.000569 -0.000542 

Homeowership 
   

-0.0152*** 

    
-0.00542 

Observations 616 616 616 616 

Number of county 56 56 56 56 

AIC 3795.8 3767.8 3763.0 3743.1 

BIC 3822.3 3803.2 3807.2 3791.8 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 12 Poisson Model with IVs between COPD and PM25 

  (1) (2) (3) (4) 

VARIABLES COPDVisits10k COPDVisits10k COPDVisits10k COPDVisits10k 

PM25 0.0145*** 0.0149*** 0.0132*** 0.0129*** 

 
-0.00547 -0.00491 -0.00465 -0.00432 

PM25_resid -0.00265 -0.0031 -0.00097 -0.0022 

 
-0.00852 -0.00786 -0.00772 -0.00759 

lnPopulation -0.157 -0.656 -0.581 -0.945 

 
-0.586 -0.558 -0.566 -0.575 

Popdensity 0.000139** -1.28E-05 1.60E-05 4.10E-05 

 
-5.94E-05 -6.72E-05 -6.87E-05 -6.63E-05 

COVID -0.558*** -0.631*** -0.603*** -0.564*** 

 
-0.0407 -0.0443 -0.0423 -0.0417 

Age65 0.0277*** -0.000197 0.00261 0.00127 

 
-0.00988 -0.0116 -0.011 -0.0115 

RaceNonWhite -0.0414** -0.0857*** -0.0788*** -0.0853*** 
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-0.0169 -0.0236 -0.0261 -0.0268 

UnemploymentRate 
 

0.00134 0.0017 -0.00399 

  
-0.0061 -0.00589 -0.00584 

lnIncome 
 

0.827*** 0.687** 0.653** 

  
-0.278 -0.277 -0.27 

Farm 
  

0.0666 0.0527 

   
-0.0465 -0.0416 

Service 
  

0.0005 6.14E-05 

   
-0.000567 -0.000547 

Homeowership 
   

-0.0153*** 

    
-0.00557 

Observations 616 616 616 616 

Number of county 56 56 56 56 

AIC 3797.6 3769.6 3765.0 3745.0 

BIC 3828.5 3809.4 3813.6 3798.1 

Robust standard errors in parentheses 

 

Figure 6 shows the four sets of different regression coefficients from Table 13. All four 

coefficients are positive, ranging from 0.012 to 0.015, with the fourth set having the lowest AIC 

value. 
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Figure 6 Regression coefficients between COPDVISITS and PM25 

 

Table 13 GMM Model with IVs between COPD and PM25 

  （1） （2） （3） （4） 

VARIABLES lnCOPDVisits10k lnCOPDVisits10k lnCOPDVisits10k lnCOPDVisits10k 

PM25 0.0434*** 0.0404*** 0.0363*** 0.0317*** 

 
-0.01 -0.00896 -0.0089 -0.00834 

lnPopulation 0.241 0.0206 0.0132 -0.341 

 
-0.342 -0.357 -0.349 -0.351 

Popdensity 0.000133 6.62E-05 9.46E-05 0.000107 

 
-9.78E-05 -0.000101 -9.96E-05 -9.74E-05 

COVID -0.691*** -0.708*** -0.674*** -0.630*** 

 
-0.0484 -0.0471 -0.0481 -0.046 

Age65 0.0211*** 0.0111 0.0129 0.0127 

 
-0.00625 -0.00825 -0.00812 -0.00793 

RaceNonWhite -0.0402*** -0.0528*** -0.0429*** -0.0430*** 

 
-0.0129 -0.0143 -0.0146 -0.0142 

UnemploymentRate 
 

0.00211 0.0023 -0.00171 

  
-0.00408 -0.004 -0.00405 

lnIncome 
 

0.319** 0.201 0.166 
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-0.156 -0.159 -0.155 

Farm 
  

0.0706*** 0.0603** 

   
-0.0267 -0.0264 

Service 
  

-0.000541 -0.000785 

   
-0.00107 -0.00105 

Homeownership 
   

-0.0113*** 

    
-0.00372 

Observations 627 627 627 627 

R-squared 0.4 0.419 0.444 0.47 

Number of county 57 57 57 57 

AIC -447.2 -464.1 -487.8 -515.3 

BIC -420.6 -428.6 -443.4 -466.5 

Standard errors in parentheses                                                                                    *** p<0.01, ** p<0.05, * p<0.1 

 

The results in Table 15 indicate that, without using instrumental variables, the regression 

coefficients for ASTHMA and PM2.5 are both positive and significant, with the second group 

having the lowest AIC value. The results in Table 16 indicate that when employing instrumental 

variables, the regression coefficients for ASTHMA and PM2.5 are both positive and highly 

significant. Similarly, the second group exhibits the lowest AIC value. Table 17 presents the results 

from GMM, where the regression coefficients are also positive and, as the results obtained using 

instrumental variables, are highly significant, supporting the findings in Table 16. 

 

Table 14 Poisson Model without IVs between ASTHMA and PM25 

  （1） （2） （3） （4） 

VARIABLES Asthma10k Asthma10k Asthma10k Asthma10k 

PM25 0.003 0.00367** 0.00347** 0.00349*** 

 
-0.00192 -0.00149 -0.00146 -0.00132 

lnPopulation -0.227 0.266 0.284 0.199 

 
-0.215 -0.167 -0.173 -0.188 

Popdensity -0.000128*** -8.75e-05*** -8.00e-05*** -7.60e-05*** 

 
-1.58E-05 -1.46E-05 -1.49E-05 -1.68E-05 

COVID -0.592*** -0.558*** -0.550*** -0.543*** 

 
-0.0126 -0.0134 -0.0135 -0.015 

Age65 -0.0259*** -0.00855* -0.00786* -0.00827* 
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-0.00367 -0.00441 -0.0044 -0.00453 

RaceNonWhite -0.0141 0.000506 0.00227 0.0021 

 
-0.0105 -0.00718 -0.00749 -0.00779 

UnemploymentRate 
 

0.0116*** 0.0119*** 0.0109*** 

  
-0.00197 -0.00195 -0.00201 

lnIncome 
 

-0.276*** -0.316*** -0.323*** 

  
-0.0639 -0.065 -0.0693 

Farm 
  

0.0206** 0.0173** 

   
-0.00868 -0.00849 

Service 
  

0.000323* 0.000236 

   
-0.000179 -0.000189 

Homeownership 
   

-0.00300* 

    
-0.00168 

Observations 627 627 627 627 

Number of county 57 57 57 57 

AIC 3234.6 3218.4 3221.4 3222.5 

BIC 3261.3 3253.9 3265.8 3271.4 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

Table 15 Poisson Model with IVs between ASTHMA and PM25 

  （1） （2） （3） （4） 

VARIABLES Asthma10k Asthma10k Asthma10k Asthma10k 

PM25 0.00731*** 0.00926*** 0.00878*** 0.00877*** 

 
-0.0013 -0.0012 -0.00118 -0.00116 

lnPopulation -0.181 0.331** 0.343** 0.249 

 
-0.213 -0.157 -0.163 -0.18 

Popdensity -0.000125*** -8.52e-05*** -7.86e-05*** -7.41e-05*** 

 
-1.51E-05 -1.45E-05 -1.50E-05 -1.67E-05 

COVID -0.608*** -0.579*** -0.571*** -0.564*** 

 
-0.0119 -0.0119 -0.0121 -0.014 

Age65 -0.0268*** -0.00968** -0.00903** -0.00948** 

 
-0.00356 -0.00425 -0.00426 -0.00435 

RaceNonWhite -0.0149 -0.000628 0.00105 0.000815 

 
-0.0101 -0.0066 -0.00694 -0.00728 

UnemploymentRate 
 

0.0122*** 0.0123*** 0.0112*** 

  
-0.0019 -0.0019 -0.00195 
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lnIncome 
 

-0.270*** -0.305*** -0.313*** 

  
-0.0626 -0.0635 -0.0678 

Farm 
  

0.0182** 0.0145* 

   
-0.00872 -0.00858 

Service 
  

0.000247 0.000152 

   
-0.000179 -0.000187 

Homeownership 
   

-0.00334* 

    
-0.00172 

Observations 627 627 627 627 

Number of county 57 57 57 57 

AIC 3235.4 3218.3 3221.5 3222.7 

BIC 3266.5 3258.3 3270.4 3276.0 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

Figure 7 presents four distinct sets of regression coefficients derived from Table 3.16. Each 

of these sets exhibits positive coefficients, with values ranging from 0.007 to 0.01. Notably, the 

second set is characterized by the lowest AIC value. 
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Figure 7 Regression coefficients between ASTHMA and PM25 

 

Table 16 GMM Model with IVs between ASTHMA and PM25 

  (1) (2) (3) (4) 

VARIABLES lnAsthma10K lnAsthma10K lnAsthma10K lnAsthma10K 

PM25 0.0236*** 0.0164*** 0.0151*** 0.0142*** 

 
-0.00476 -0.00362 -0.0036 -0.0034 

lnPopulation 0.0375 0.415*** 0.413*** 0.302** 

 
-0.163 -0.144 -0.141 -0.143 

Popdensity -0.000126*** -7.82e-05* -7.19e-05* -6.74e-05* 

 
-4.65E-05 -4.08E-05 -4.03E-05 -3.97E-05 

COVID -0.668*** -0.598*** -0.587*** -0.575*** 

 
-0.023 -0.019 -0.0195 -0.0188 

Age65 -0.0301*** -0.0105*** -0.00991*** -0.0101*** 

 
-0.00297 -0.00333 -0.00328 -0.00324 

RaceNonWhite -0.0191*** 8.69E-05 0.00209 0.00192 

 
-0.00615 -0.00577 -0.00589 -0.0058 

UnemploymentRate 
 

0.0124*** 0.0125*** 0.0112*** 

  
-0.00165 -0.00162 -0.00165 
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lnIncome 
 

-0.310*** -0.343*** -0.354*** 

  
-0.0628 -0.0643 -0.0633 

Farm 
  

0.0189* 0.0151 

   
-0.0108 -0.0108 

Service 
  

0.000159 6.65E-05 

   
-0.000431 -0.000427 

Homeownership 
   

-0.00380** 

    
-0.00152 

Observations 627 627 627 627 

R-squared 0.856 0.9 0.904 0.906 

Number of county 57 57 57 57 

AIC -1378.9 -1602.4 -1622.8 -1640.0 

BIC -1352.3 -1566.9 -1578.4 -1591.1 

Standard errors in parentheses                                                                                    *** p<0.01, ** p<0.05, * p<0.1 

 

The findings presented in Table 18 indicate that, in the absence of instrumental variables, 

the regression coefficients for COPD in relation to O3 are both positive and statistically significant, 

with the third group exhibiting the lowest AIC value. Conversely, the results in Table 19 

demonstrate that when instrumental variables are employed, the regression coefficients for COPD 

and O3 remain positive and are highly significant, with the fourth group reflecting the lowest AIC 

value. Furthermore, Table 20 outlines the GMM results, which also reveal a positive regression 

coefficient; however, only the coefficient from the first group shows mild significance, thereby 

corroborating the results obtained in Table 19. 
 

 

Table 17 Poisson Model without IVs between COPD and O3 

  （1） （2） （3） （4） 

VARIABLES COPDVisits10k COPDVisits10k COPDVisits10k COPDVisits10k 

O3 0.00157 0.00221** 0.00207* 0.00195* 

 
-0.00113 -0.00111 -0.00112 -0.00108 

lnPopulation -0.157 -0.673 -0.58 -0.965* 

 
-0.587 -0.569 -0.578 -0.585 

Popdensity 0.000117* -4.35E-05 -1.28E-05 1.46E-05 

 
-5.97E-05 -6.96E-05 -7.05E-05 -6.80E-05 
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COVID -0.504*** -0.581*** -0.559*** -0.519*** 

 
-0.0351 -0.0333 -0.0327 -0.036 

Age65 0.0316*** 0.00188 0.00458 0.00311 

 
-0.0102 -0.0116 -0.011 -0.0115 

RaceNonWhite -0.0380** -0.0857*** -0.0796*** -0.0863*** 

 
-0.0175 -0.0238 -0.0263 -0.027 

UnemploymentRate 
 

0.000291 0.00086 -0.00509 

  
-0.00607 -0.00577 -0.00576 

lnIncome 
 

0.872*** 0.730*** 0.692*** 

  
-0.278 -0.272 -0.268 

Farm 
  

0.067 0.0527 

   
-0.0481 -0.0424 

Service 
  

0.000644 0.00019 

   
-0.000569 -0.000544 

Homeownership 
   

-0.0159*** 

    
-0.00556 

Observations 616 616 616 616 

Number of county 56 56 56 56 

AIC 3811.4 3779.9 3774.7 3752.4 

BIC 3837.9 3815.2 3818.9 3801.1 

Robust standard errors in parentheses                                                                    *** p<0.01, ** p<0.05, * p<0.1 
 

 

 

 

 

Table 18 Poisson Model with IVs between COPD and O3 

  (1) (2) (3) (4) 

VARIABLES COPDVisits10k COPDVisits10k COPDVisits10k COPDVisits10k 

O3 0.00367 0.00648*** 0.00619*** 0.00573*** 

 
-0.00243 -0.00223 -0.00222 -0.00217 

lnPopulation -0.0462 -0.526 -0.444 -0.818 

 
-0.638 -0.606 -0.61 -0.62 

Popdensity 0.000107* -7.94E-05 -5.11E-05 -2.18E-05 

 
-5.96E-05 -6.58E-05 -6.54E-05 -6.40E-05 

COVID -0.507*** -0.597*** -0.577*** -0.538*** 

 
-0.0367 -0.0356 -0.0347 -0.0376 
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Age65 0.0329*** 0.000394 0.00305 0.00187 

 
-0.0106 -0.0115 -0.0109 -0.0114 

RaceNonWhite -0.0382** -0.0931*** -0.0874*** -0.0931*** 

 
-0.0176 -0.024 -0.0263 -0.0274 

UnemploymentRate 
 

-0.000817 -0.000269 -0.00577 

  
-0.00621 -0.00591 -0.00588 

lnIncome 
 

0.975*** 0.844*** 0.797*** 

  
-0.267 -0.255 -0.254 

Farm 
  

0.0589 0.0463 

   
-0.0487 -0.0427 

Service 
  

0.000603 0.000174 

   
-0.000577 -0.00055 

Homeownership 
   

-0.0150*** 

    
-0.0056 

Observations 616 616 616 616 

Number of county 56 56 56 56 

AIC 3811.5 3774.7 3769.8 3748.7 

BIC 3842.4 3814.5 3818.4 3801.8 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

Figure 8 illustrates four separate sets of regression coefficients obtained from Table 19. 

Each set demonstrates positive coefficients, with values spanning from 0.003 to 0.007. It is 

noteworthy that the fourth set is distinguished by having the lowest AIC value. 
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Figure 8 Regression coefficients between COPD visits and O3 

 

Table 19 GMM Model with IVs between COPD and O3 

  (1) (2) (3) (4) 

VARIABLES lnCOPDVisits10k lnCOPDVisits10k lnCOPDVisits10k lnCOPDVisits10k 

O3 0.0118* 0.00305 0.000851 -0.000668 

 
-0.00681 -0.00468 -0.00455 -0.00457 

lnPopulation 0.509 -0.313 -0.352 -0.682* 

 
-0.541 -0.383 -0.374 -0.4 

Popdensity 5.70E-05 2.09E-05 7.06E-05 9.55E-05 

 
-0.000107 -0.000103 -0.000103 -0.000104 

COVID -0.535*** -0.558*** -0.528*** -0.500*** 

 
-0.0314 -0.0342 -0.0356 -0.0376 

Age65 0.0371*** 0.0172** 0.0192** 0.0187** 

 
-0.00789 -0.0079 -0.00783 -0.0078 

RaceNonWhite -0.0426*** -0.0506*** -0.0372** -0.0351** 

 
-0.015 -0.0162 -0.0168 -0.0167 

UnemploymentRate 
 

-0.00253 -0.00115 -0.00392 

  
-0.00404 -0.00402 -0.00409 
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lnIncome 
 

0.343* 0.162 0.103 

  
-0.177 -0.186 -0.187 

Farm 
  

0.0830*** 0.0749*** 

   
-0.0269 -0.0269 

Service 
  

-3.55E-05 -0.0003 

   
-0.00103 -0.00103 

Homeownership 
   

-0.00998*** 

    
-0.0038 

Observations 627 627 627 627 

R-squared 0.306 0.458 0.473 0.477 

Number of county 57 57 57 57 

AIC -356.5 -507.7 -520.7 -523.2 

BIC -329.9 -472.2 -476.3 -474.3 

Standard errors in parentheses                                                                                    *** p<0.01, ** p<0.05, * p<0.1 

 

The findings presented in Table 21 indicate that, in the absence of instrumental variables, 

the regression coefficient for the relationship between ASTHMA and O3 is negative and 

statistically insignificant. In contrast, the results displayed in Table 22, which incorporate 

instrumental variables, reveal a positive and highly significant regression coefficient for ASTHMA 

and O3, with the second group exhibiting the lowest Akaike Information Criterion (AIC) value. 

Furthermore, Table 23 provides the GMM results, demonstrating that all regression coefficients 

are positive and highly significant, thereby corroborating the conclusions drawn from Table 22. 

 

Table 20 Poisson Model without IVs between ASTHMA and O3 

  (1) (2) (3) (4) 

VARIABLES Asthma10k Asthma10k Asthma10k Asthma10k 

O3 0.000317 -9.50E-05 -0.000159 -0.000196 

 
-0.000322 -0.000307 -0.000293 -0.000282 

lnPopulation -0.233 0.222 0.241 0.154 

 
-0.208 -0.164 -0.172 -0.188 

Popdensity -0.000132*** -8.93e-05*** -8.06e-05*** -7.62e-05*** 

 
-1.51E-05 -1.49E-05 -1.51E-05 -1.71E-05 

COVID -0.580*** -0.543*** -0.535*** -0.527*** 

 
-0.0103 -0.0111 -0.011 -0.0127 

Age65 -0.0251*** -0.00796* -0.00723* -0.00764* 
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-0.00368 -0.00439 -0.00439 -0.00452 

RaceNonWhite -0.0137 0.00149 0.00346 0.00336 

 
-0.0103 -0.00708 -0.00724 -0.00755 

UnemploymentRate 
 

0.0114*** 0.0117*** 0.0107*** 

  
-0.00203 -0.00201 -0.00204 

lnIncome 
 

-0.279*** -0.323*** -0.331*** 

  
-0.0646 -0.0649 -0.0697 

Farm 
  

0.0224*** 0.0192** 

   
-0.0086 -0.00834 

Service 
  

0.000360** 0.000273 

   
-0.000173 -0.000184 

Homeownership 
   

-0.00304* 

    
-0.00183 

Observations 627 627 627 627 

Number of county 57 57 57 57 

AIC 3235.5 3220.0 3222.8 3223.9 

BIC 3262.2 3255.5 3267.2 3272.8 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

Table 21 Poisson Model with IVs between ASTHMA and O3 

  (1) (2) (3) (4) 

VARIABLES Asthma10k Asthma10k Asthma10k Asthma10k 

O3 0.00359*** 0.00160*** 0.00167*** 0.00152*** 

 
-0.000621 -0.000509 -0.000495 -0.00049 

lnPopulation -0.0336 0.287* 0.310* 0.23 

 
-0.186 -0.16 -0.167 -0.183 

Popdensity -0.000143*** -0.000101*** -9.40e-05*** -8.93e-05*** 

 
-1.57E-05 -1.63E-05 -1.65E-05 -1.85E-05 

COVID -0.584*** -0.549*** -0.542*** -0.535*** 

 
-0.00987 -0.0108 -0.0106 -0.0125 

Age65 -0.0229*** -0.00838* -0.00768* -0.00801* 

 
-0.00352 -0.00439 -0.00439 -0.00454 

RaceNonWhite -0.0166* -0.00153 -2.75E-05 0.000135 

 
-0.00986 -0.00727 -0.00746 -0.0077 

UnemploymentRate 
 

0.0111*** 0.0113*** 0.0104*** 

  
-0.00199 -0.00197 -0.00203 



 
 

44 
 

lnIncome 
 

-0.244*** -0.282*** -0.292*** 

  
-0.0672 -0.0684 -0.0732 

Farm 
  

0.0198** 0.0172** 

   
-0.00865 -0.00834 

Service 
  

0.000346* 0.00027 

   
-0.000179 -0.00019 

Homeownership 
   

-0.00267 

    
-0.00184 

Observations 627 627 627 627 

Number of county 57 57 57 57 

AIC 3233.0 3220.9 3223.4 3224.8 

BIC 3264.1 3260.8 3272.3 3278.0 

Robust standard errors in parentheses                                                                         *** p<0.01, ** p<0.05, * p<0.1 

 

Figure 9 presents four unique sets of regression coefficients obtained from Table 22. Each 

set demonstrates positive coefficients, with values spanning from 0.001 to 0.004. It is noteworthy 

that the second set is distinguished by having the lowest AIC value, which holds particular 

importance in this analysis. 

 
Figure 9 Regression coefficients between ASTHMA and O3 
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Table 22 GMM Model with IVs between ASTHMA and O3 

  (1) (2) (3) (4) 

VARIABLES lnAsthma10K lnAsthma10K lnAsthma10K lnAsthma10K 

O3 0.0112*** 0.00643*** 0.00539** 0.00461** 

 
-0.00401 -0.0023 -0.00213 -0.00205 

lnPopulation 0.474 0.494*** 0.464*** 0.374** 

 
-0.318 -0.188 -0.175 -0.179 

Popdensity -0.000184*** -0.000134*** -0.000122** -0.000113** 

 
-6.32E-05 -5.08E-05 -4.84E-05 -4.65E-05 

COVID -0.590*** -0.556*** -0.546*** -0.538*** 

 
-0.0185 -0.0168 -0.0166 -0.0169 

Age65 -0.0182*** -0.00912** -0.00848** -0.00848** 

 
-0.00464 -0.00388 -0.00367 -0.0035 

RaceNonWhite -0.0246*** -0.00858 -0.0057 -0.00431 

 
-0.00883 -0.00796 -0.00786 -0.00751 

UnemploymentRate 
 

0.00922*** 0.00971*** 0.00924*** 

  
-0.00199 -0.00188 -0.00184 

lnIncome 
 

-0.196** -0.245*** -0.268*** 

  
-0.087 -0.0869 -0.0839 

Farm 
  

0.0156 0.0146 

   
-0.0126 -0.0121 

Service 
  

0.000341 0.000286 

   
-0.000483 -0.000464 

Homeownership 
   

-0.00217 

    
-0.0017 

Observations 627 627 627 627 

R-squared 0.745 0.861 0.877 0.888 

Number of county 57 57 57 57 

AIC -1021.2 -1397.7 -1472.7 -1527.9 

BIC -994.6 -1362.2 -1428.3 -1479.0 

Standard errors in parentheses                                                                                    *** p<0.01, ** p<0.05, * p<0.1 

 

Model Selection  

Like the model selection process discussed in Chapter Two, we employ the Akaike Information 

Criterion to identify the most suitable model. AIC serves as a statistical metric for model selection, 

providing an estimation of the relative quality of various statistical models in relation to a specific 
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dataset. This criterion aids in discerning the model that achieves an optimal balance between fit 

adequacy and model complexity. While AIC does not function as a hypothesis test, it offers a 

structured methodology for comparing models and selecting the one that is most likely to 

generalize effectively to new, unseen data. By synthesizing the findings from the 18 tables 

presented in the preceding section, it is evident that the models with the lowest AIC values in each 

respective table are Model 4 in Table 7, Model 2 in Table 10, Model 4 in Table 13, Model 2 in 

Table 16, Model 4 in Table 19, and Model 2 in Table 22. These results are documented in the six 

tables provided in the previous section. 

 

Robustness Check 

Robustness checks for GMM involve assessing the stability and reliability of GMM results by 

altering model specifications or estimation techniques. This process is crucial for confirming that 

the research conclusions are not unduly affected by specific decisions made during the analytical 

process. Additionally, it serves to validate the chosen model specifications and estimation methods, 

thereby confirming that the research outcomes are not merely a product of analytical choices. By 

establishing robustness, the credibility and persuasive power of the research findings are 

significantly enhanced. The preceding findings indicate that GMM is employed to assess the 

efficacy of the Poisson control function model. An examination of the results presented in Tables 

8, 14, 17, 20, and 23 reveals that GMM serves as a highly effective instrument for stability testing 

and has been instrumental in the context of this research. The results of GMM are comparable to 

those of the Poisson model; however, the significance is not as robust as that of the Poisson model. 

Nevertheless, this method can bolster the validity of the findings obtained from the Poisson model. 

 

Bootstrapping Method 

We use a bootstrap method to correct the biased standard errors and use 500 resampling in 

bootstrap. We only choose  the models with the lowest AIC values and the results are as follows,  
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Table 23 Bootstrapping Method Results 

Poisson_IVs COPD_AQI ASTHMA_AQI COPD_PM25 ASTHMA_PM25 COPD_O3 ASTHMA_O3 

Model Model 4 Model 2 Model 4 Model 2 Model 4 Model 2 

Coefficients 0.0183438 0.0114027 0.0128796 0.0092626 0.0057276 0.0015957 

Bootstrap 

standard 

errors 

0.0032718 0.0012913 0.004289 0.001173 0.0022143 0.0005052 

 

As shown in Table 24, using bootstrapping methods to correct standard errors in the Poisson model, 

both the sign and significance level for key independent variables remain the same. The results of 

this method show that the Poisson model is convincing and serves as an effective tool. 

 

Discussion and Policy Recommendation 

This chapter examines the empirical relationship between two categories of respiratory diseases 

and three indicators of air quality. The analysis employs a two-stage methodology, beginning with 

fixed effects panel regression in the first stage, followed by instrumental variable techniques and 

a Poisson control function model in the second stage. A total of four distinct sets of control 

variables are utilized to derive the regression results. The findings indicate a significant coefficient 

for the proportion of electric vehicles relative to gasoline-powered vehicles, as well as a positive 

correlation between the three air quality indicators and health outcomes. Additionally, the AIC 

values for each variable set are compared, leading to the identification of the optimal set 

characterized by the lowest AIC value. A comparative analysis of the Generalized Method of 

Moments and Poisson control function models further validated the efficacy of the instrumental 

variable approach. The standard variance was optimized through the Bootstrapping method, which 

mitigates bias in the Poisson regression results. While the findings are largely consistent with the 

initial hypotheses, several limitations persist. Firstly, the sample size is insufficiently large. 

Secondly, there are gaps in the data, and other factors influencing respiratory diseases, such as 

industrial and household pollution, have not been accounted for. Moreover, the instrumental 

variables employed in the model require further validation, and the control variables necessitate 

empirical data to assess their validity. Although the results generally support the hypotheses, future 
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research is anticipated to utilize diverse datasets and sample sizes for similar investigations. 

Furthermore, the Difference-in-Differences (DID) approach is recognized as a valuable empirical 

research tool for this study. 

 

As of 2024, the proportion of electric vehicles in California remains relatively low; 

however, this study offers valuable insights for future research on electric vehicles. Policymakers 

should acknowledge that, in the long term, the adoption of electric vehicles is an inevitable trend. 

In regions of California with a high ratio of renewable energy, the market potential for electric 

vehicles is expected to be substantial, particularly regarding health benefits. Consequently, the 

government should implement additional policies and support mechanisms to encourage the 

widespread adoption of electric vehicles. 

 

Conclusion 

This chapter provides a comprehensive introduction to the improvements in air quality resulting 

from the adoption of electric vehicles in California and their potential health impacts. First, we 

briefly review the research literature on the relationship between air pollution and health, as well 

as the direct environmental impacts and indirect health effects associated with the implementation 

of electric vehicles over the past decade. Currently, many scholars support the positive effects of 

electric vehicles on both air quality and public health. Based on existing data and historical 

literature, we propose two hypotheses. Next, we outline the stages of data introduction, model 

establishment, and result interpretation. By employing a Poisson control function model with 

instrumental variables, we obtained results that align closely with our hypotheses. The findings 

indicate a significant positive correlation between three different air quality indicators and two 

types of respiratory diseases. Additionally, by comparing the regression coefficients of four 

distinct groups of control variables, we identify the model with the lowest AIC value. At the 

conclusion of the article, we conduct a robustness check using the GMM method and optimize the 

standard errors using the Bootstrapping Method. 

 

In summary, this chapter encapsulates the essence of the entire dissertation and serves as a 

bridge to the cost-benefit analysis presented in the next chapter. Due to incomplete data and model 

biases, the conclusions drawn require further validation. Although the large-scale adoption of 
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electric vehicles encounters numerous challenges—ranging from policy-related issues and 

technical obstacles to local protectionism and political ideologies—humanity is striving to 

embrace electric vehicles from the perspective of sustainable development, continuously fostering 

conditions for better utilization of electric vehicles worldwide. 

 

Appendices 

Table A. Value for RateEV_Gas 

F value AQI_Model 1 PM25_Model 4 O3_Model 3 

RateEV_Gas 8.53 7.67 4.17 
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