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ABSTRACT

This study utilizes publicly available electric vehicle (EV) data from the California Energy
Commission to investigate the potential impact of EVs on air quality in California from 2010 to
2021. It also examines how changes in air pollution levels resulting from EV adoption affect
respiratory health. First, a fixed-effects panel regression model is employed to analyze the
quantitative relationship between air quality and electric vehicle usage. The results indicate that,
under the current electricity generation structure, large-scale adoption of electric vehicles could
improve air quality. Furthermore, using the ratio of electric vehicles to gasoline-powered vehicles
as an instrumental variable, a panel regression with a Poisson control model is applied to assess
the correlation between changes in air quality caused by widespread EV adoption and the
prevalence of respiratory diseases. The Generalized Method of Moments (GMM) is also used as a
robustness check. This study demonstrates that broad implementation of electric vehicles is
expected to significantly enhance air quality in California and reduce health risks associated with

air pollution.
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Introduction

This paper explores the relationship between the widespread adoption of electric vehicles and the
resulting improvements in air quality, with a particular emphasis on the implications for public
health. Our objective is to determine whether there is a statistically significant decline in the
incidence rates of diseases strongly associated with air quality, attributable to the reduction of
emissions from vehicular traffic. In this chapter, we continue to utilize the data and samples
established in the previous analysis while incorporating additional health-related metrics. To
investigate the potential health outcomes linked to electric vehicles in California over the past
decade, we employ a Poisson control function model in conjunction with an instrumental variable
approach. The findings suggest that the improvements in air quality resulting from the adoption of
electric vehicles are associated with a significant reduction in the incidence of respiratory diseases.
This indicates that, over the long term, electric vehicles not only yield substantial environmental
benefits but also promote healthier living conditions for individuals. The following section
presents a literature review that examines the health benefits derived from environmental

improvements associated with electric vehicles in California and China in recent years.

Li et al. (2024) simulated the changes in air pollutant concentrations and public health
under a scenario in which Los Angeles adopts 100% renewable electricity by 2045. The article
indicates that, while ensuring a reliable power supply, the city's PM2.5 concentration is projected
to decrease by 8% with the adoption of 100% renewable electricity. Simultaneously, assuming
consistent meteorological conditions, the ozone concentration is expected to increase by 5%
compared to 2012. These changes could potentially yield up to $1.4 billion in public health benefits
for Los Angeles by 2045. Hata et al. (2025) employed numerical weather prediction techniques to
evaluate the alterations in the urban heat island (UHI) phenomenon within the Greater Tokyo Area
(GTA) after the integration of BEVs. The results indicated that the introduction of BEVs would
lead to a reduction in the peak local temperature in the GTA by 0.25°C. This research implies that
the widespread adoption of BEVs has beneficial implications for public health. A substantial body
of literature has emerged examining the relationship between electric vehicles and public health,
particularly in the context of the COVID-19 pandemic that began in 2020. Considering traffic
restrictions and a marked decrease in travel, numerous studies have endeavored to investigate this

connection through simulations, modeling, and empirical research methodologies. The subsequent



two articles specifically address the interplay between electric vehicles and health in China in the
aftermath of the pandemic. The first article analyzes the effects of COVID-19 on the electric
vehicle sector, while the second article evaluates the implications of electric vehicles for public
health and air quality. Wen et al. (2021) elucidate the diverse obstacles and prospects linked to the
advancement of EVs in China. The authors conduct an analysis of emerging trends and observe a
short-term decline in electric vehicle sales attributable to the COVID-19 pandemic. Nevertheless,
they argue that this scenario may ultimately catalyze increased demand for electric vehicles in the
long term, especially for larger models characterized by superior performance, which are likely to
witness even greater demand. Horton et al. (2021) employ a specialized model to simulate the
interaction between meteorological conditions and atmospheric chemistry, with the goal of
evaluating the potential benefits of adopting electric vehicles during periods of extreme pollution
in China. The findings reveal that heavy-duty electric vehicles (HD EVs) and light-duty electric
vehicles (LD EVs) each offer distinct environmental and health benefits. Specifically, the
widespread implementation of HD EVs is linked to a reduction in nitrogen oxides and fine
particulate matter; however, this transition will not lead to a decrease in carbon dioxide emissions
unless there is a corresponding increase in zero-emission electricity generation. In contrast, while
the extensive adoption of LD EVs consistently results in a reduction of greenhouse gas emissions,
it does not significantly improve air quality. Moreover, the economic benefits associated with LD
EVs are nearly twice as significant as those related to HD EVs. The study concludes that although
moderate public health benefits may be achieved through the adoption of electric vehicles to
mitigate severe winter pollution, it emphasizes the need for continued reductions in emissions from

electricity production as a more critical priority.

Background

Historical Health Consequences of Air Pollution

A significant risk factor associated with air pollution is its contribution to the development of
various health complications, including respiratory infections, cardiovascular disease, chronic
obstructive pulmonary disease, stroke, and lung cancer. Health issues resulting from air pollution

may be manifested as respiratory difficulties, asthma, coughing, wheezing, and the exacerbation



of pre-existing respiratory and cardiopulmonary disorders. ! Air pollution is widely recognized as
a major public health risk that poses a persistent threat to human life. This issue has been
extensively studied by both medical researchers and economists. The following seven articles
illustrate the association between air pollution and mortality rates. The countries involved in the
research include China, the United States, Brazil, Colombia, and several other nations worldwide.
Yin et al. (2017) conducted an analysis to estimate the correlation between air pollution and
mortality rates by examining daily death counts across 38 cities in 27 provinces of China. The
research encompasses fatalities from all causes, including both cardiovascular and non-
cardiovascular diseases. The results revealed that an increase of 10 micrograms per cubic meter in
PM10 concentration on a given day was associated with a 0.44% rise in daily mortality (95%
confidence interval: 0.30% to 0.58%). Additionally, the findings indicate that air pollution exerts
the most pronounced effect on mortality due to cardiovascular diseases. Deryugina et al. (2019)
investigate the correlation between PM2.5 concentrations and mortality rates using healthcare
insurance data from the United States. The authors employ variations in local wind direction as an
instrumental variable to evaluate air pollution levels and incorporate machine learning techniques
to quantify the years of life lost due to pollution exposure. Their results reveal that air pollution
exerts the most significant impact on mortality among the elderly population. Aron et al. (2024)
provide evidence that individuals diagnosed with COPD, along with various personal risk factors,
may exhibit increased susceptibility to the adverse effects of acute outdoor air pollution. This
research employs data from 25 metropolitan areas across the United States, spanning the years
2016 to 2019, to investigate the relationship between winter air pollution and mortality rates among
COPD patients. The findings suggest that the risk of mortality is projected to increase by a factor
of 1.05 (95% CI, 1.02-1.09) for each 10 pg/m? rise in winter PM2.5 levels. Luben et al. (2023)
present epidemiological evidence from existing literature that highlights the association between
short-term exposure to air pollution and infant mortality. Several studies indicate that increased
exposure to PMio, NO2, SOz, or CO correlates with elevated rates of infant mortality. Stafoggia et
al. (2023) perform a comprehensive analysis of all-cause mortality data from 1995 to 2020,
covering 620 cities across 36 countries. This study utilized daily records of air temperature and
key air pollutants, specifically PM10, PM2.5, NO2, and Os. The results reveal a substantial

association between air temperature and the influence of air pollutants on mortality rates, with a

! https://en.wikipedia.org/wiki/Air_pollution



particularly marked effect observed during the warmer months. According to Nascimento and
Gouveia (2024), Exposure to air pollutants has been linked to a heightened risk of mortality from
non-accidental causes, in addition to an increased likelithood of death from cardiovascular and
respiratory diseases. Furthermore, individuals residing in areas with lower educational attainment
and socioeconomic status face a greater risk of death related to air pollution. Gao et al. (2024)
examine the correlation between fine particulate matter associated with wildfires and mortality
rates. Their results indicate that exposure to wildfire-related PM2.5 is linked to an increase of
17.77 deaths per 100,000 individuals (95% CI: 11.12-24.38). Data from the San Joaquin Valley
(SJV) region in 2016, as reported by Zarate-Gonzalez et al. (2024), indicate that the estimated total
economic impact of air pollution in this area is approximately $500 million in emergency room
visits and $220 million in hospitalization expenses. These financial burdens are comprised of four
key elements: medical expenditures, productivity losses, school absenteeism, and opportunity
costs. The study further emphasizes that a reduction in pollutant concentrations would significantly
mitigate the health impacts on SJV residents, potentially preventing nearly 20,000 emergency
room visits and around 20,000 hospitalizations. The financial savings associated with air pollution-
related costs are delineated into three primary categories: exceeding $46 million for PM2.5, over

$80 million for nitrogen dioxide (NOz), and nearly $8 million for ozone (O3).

Air pollution can also adversely affect mental and psychological health.? Chen et al. (2024)
investigate a study examining the quantitative relationship between air pollution and mental health
disorders. The research utilized data from the China Family Panel Studies, which are conducted
between 2014 and 2015, encompassing a sample of 12,615 urban residents. The results indicated
a significant positive correlation between levels of air pollution and the prevalence of mental
disorders. F. Chen et al. (2023) perform an empirical investigation into the correlation between air
pollution and the mental health of the elderly population. This study employs mental health data
obtained from the China Health and Nutrition Survey, along with urban-level air pollution metrics.
The findings reveal a significant deterioration in the mental health of older adults in reaction to

increasing concentrations of air pollutants. Table 1 presents recent literature on the relationship

2 https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/impact-of-air-pollution-on-mental-
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between health and air pollution, primarily covering research articles from China and the United

States.

Table 1 Recent Research Has Focused on the Relationship between Health Outcomes and Air

Pollution

Health and air pollution

Location Topics Papers

World PM2.5 and health burden (Buetal., 2021)
World PM2.5 and its health effects (Feng et al., 2016)
China Willingness to pay for clean air in China (Freeman et al., 2019)
China PM2.5 significantly increases the incidence and (Pui et al., 2014)

mortality of cardiovascular and respiratory

diseases
China Health burden and PM2.5 (Song et al., 2017)
Czech PM2.5 elevates the incidence of respiratory (Sulc et al., 2022)
diseases
USA Costs of air pollution (Zarate-Gonzalez et al., 2024)
China Air pollution on mental illness (S. Chen et al., 2024)
China Effect of PM2.5 on the mortality of cardiovascular  (Zhu et al., 2024)
diseases
USA Health and climate benefits of electric school (Choma et al., 2024)
buses
USA Air pollution and COVID-19 mortality (X. Wu et al., 2020)
China Particulate air pollution and mortality (Yin et al., 2017)
China Air pollution and mental health (F. Chen et al., 2023)
USA The influence of air pollution on mortality rates (Deryugina et al., 2019)

and healthcare costs.

USA The relationship between air pollution and low (Gong et al., 2023)
birth weight.
World Air pollution and infant mortality (Luben et al., 2023)
World Joint effect of heat and air pollution on mortality (Stafoggia et al., 2023)
Brazil Air pollution and mortality (Nascimento & Gouveia, 2024)
Brazil PM2.5 and cardiovascular mortality (Gao et al., 2024)
Colombia COPD associated with air pollution (Herrera Lopez et al., 2025)
Netherlands COPD prevalence, incidence, and survival (Afonso et al., 2011)




USA PM2.5 associated with mortality (Aron et al., 2024)

Potential Health Implications Related to the Implementation of Electric Vehicles

Some scholarly articles have examined health research pertinent to electric vehicles. In this context,
we present a selection of articles that specifically address electric vehicles within the United States,
accompanied by analogous studies from various international contexts. Kazimi (1997) conducted
an analysis of the total emissions produced by new energy vehicles in the Los Angeles region,
examining various pricing scenarios from three decades prior. Utilizing a dynamic
microsimulation model, the author assessed the impact of price reductions for alternative fuel
vehicles on total emissions. The results indicated that the implementation of compressed natural
gas vehicles, methanol vehicles, and electric vehicles resulted in annual health benefits estimated
to be between $20 million and $120 million, and between $3.5 million and $70 million,
respectively. Choma et al. (2024) examine the potential impact of electric school buses in the
United States on reducing adult mortality rates linked to PM2.5 exposure and mitigating the risk
of asthma in children, alongside the associated health benefits. The authors further assess the
environmental advantages stemming from a decrease in greenhouse gas emissions. The findings
indicate that substituting each diesel school bus with an electric counterpart in the U.S. as of 2017
could result in an overall benefit of $84,200 per bus. This total benefit is comprised of estimated

climate benefits amounting to $43,800 and health benefits totaling $40,400 per bus.

The following six articles explore the impact of electric vehicles on public health in the
United States. Some articles highlight the positive health outcomes linked to electric vehicles,
while others offer a more balanced perspective. A study comprehensively assesses the impact of
BEVs adoption. It employs a computable general equilibrium model to evaluate the effects of
various scenarios. Three key factors were considered: the levels of subsidies, financial incentives
provided to manufacturers, as well as the costs associated with fuel., while also accounting for
enhancements in the productivity of battery manufacturing for BEVs. The results show that
subsidies significantly influence both GDP and BEVs adoption. Although BEVs adoption
contributes to a reduction in tailpipe emissions, non-tailpipe emissions may increase due to
enhanced productivity or increased manufacturing activities resulting from subsidies, potentially

offsetting the reductions in tailpipe emissions either partially or entirely. Therefore, to achieve the



anticipated reduction in overall emissions, subsidy policies should be integrated with initiatives
promoting green manufacturing and renewable energy generation (Z. Chen et al., 2021). A
research investigation examines three dimensions of the economic implications associated with
electric vehicles: the individual incentives for their adoption, the external benefits they provide,
and the most effective policies for promoting their use. The findings suggest that as the electricity
grid undergoes a transition from reliance on coal and experiences a rise in the proportion of
renewable energy sources, the benefits of reduced pollution attributable to electric vehicles will
become more pronounced, particularly in the Midwest region of the United States, where coal
remains a significant energy source. Therefore, as the electricity grid becomes increasingly
sustainable, it is advisable to enhance subsidies aimed at environmental protection (Rapson &
Muehlegger, 2023). A recent study examines the emissions of PM2.5 and the associated health
impacts resulting from a large-scale transition to electric vehicles (EVs) across various states in
the United States, as well as in the fifty most populous metropolitan statistical areas (MSAs). The
findings suggest that, compared to the current vehicle market framework, the adoption of EVs
could lead to a reduction in premature mortality rates by approximately 10%. The study highlights
that the electrification of vehicles in the Western and Northeastern regions would provide more
substantial health and climate mitigation benefits. Furthermore, if a zero-emission and fully
renewable energy grid is established, EVs would be significantly cleaner and more
environmentally sustainable than traditional gasoline vehicles. The authors also indicate that
vehicle electrification could help alleviate health disparities. They advocate for the widespread
implementation of EVs in conjunction with a cleaner energy grid, arguing that vehicle
electrification is the most effective strategy for states aiming to improve public health outcomes
(Singh et al., 2024). In order to elucidate the numerous advantages associated with electric vehicles,
a comprehensive study employs a substantial dataset to quantify these benefits. The findings
indicate that the economic returns of electric vehicles, as assessed through cost-benefit analyses,
are frequently linked to factors such as human health, air quality, and environmental sustainability
(Malmgren, 2016). A recent study investigates the influence of real-world electric vehicle (EV)
sales on health impact assessments (HIA) and evaluates the effects of ZEV regulations on
childhood asthma. Utilizing data from the United States spanning from 2013 to 2019, the research
analyzes the relationship between EV and non-EV vehicle sales and fleets, as well as their impact

on the incidence and prevalence of asthma, employing generalized linear mixed models for



analysis. The findings suggest that the sale of new EVs is associated with a decrease in asthma
cases; specifically, it is estimated that one case of asthma can be prevented for every 264 new EVs
sold (95% CI: 113-401). Furthermore, when EV sales account for 21.4% of the annual market
share previously held by non-EV sales, there is significant potential to prevent new cases of
childhood asthma attributable to new vehicle sales (Gujral et al., 2025). Nevertheless, some articles
remain skeptical about the current environmental benefits of electric vehicles, including the one
mentioned below. A study finds that, regardless of whether the vehicle is fully electric or a plug-
in hybrid, whether the household has one car or multiple cars, and regardless of location within or
outside of California, the annual mileage of electric vehicles is significantly lower than that of
gasoline cars. This discovery indicates that the present environmental advantages of EVs are not

as significant as previously expected (Davis, 2019).

There are five additional articles discussing electric vehicles and their environmental
impact in Germany, Italy, India, and other countries, as well as their research on health-related
aspects. A study examining electric vehicles in India evaluates their overall influence on the power
grid. The analysis employs a model based on battery electric vehicle (BEV) adoption rates of 5%
and 15% in New Delhi. The findings indicate that, firstly, the proliferation of BEVs would enhance
India's renewable energy capacity. Secondly, it is projected that carbon dioxide emissions from
BEVs in India would decrease by approximately 40% compared to conventional vehicles. Lastly,
to fully realize the synergistic benefits of electric vehicles, it is essential for the Indian government
to align efforts related to the expansion of electric vehicles, the establishment of a national smart
grid, and the sustainability of the country's renewable energy resources (Gopal et al., 2015). A
comparative analysis is conducted to evaluate the reduction of carbon dioxide emissions
attributable to electric vehicles in Italy and Germany, considering comparable levels of renewable
energy integration. The authors noted that achieving a significant reduction in carbon dioxide
emissions in Germany would require a substantial increase in renewable energy capacity.
Conversely, Italy, despite having a lower capacity for renewable energy, stands to benefit from the
electrification of its transportation sector (Bellocchi et al., 2019). In a chapter titled “Future of
Road Transportation,” the author explores the various challenges and limitations associated with
electric vehicles (EVs) and potential strategies for addressing these issues. The current challenges

confronting electric vehicles encompass several key areas: the source of charging energy, which



significantly influences the overall environmental footprint of EVs; restricted driving range;
prolonged charging times; concerns regarding battery recycling and environmental contamination;
inadequate charging infrastructure; the risk of grid overload; and the high costs associated with the
purchase and maintenance of electric vehicles (Kantumuchu, 2023). This research endeavor seeks
to assess the empirical correlation between the utilization of BEVs and HEVs and their effects on
public health. A thorough literature review was conducted across six prominent databases,
resulting in the identification of 897 peer-reviewed articles published over a 35-year period, from
1990 to 2024. The findings reveal that 52 articles satisfy the inclusion criteria, with 94% of these
focusing on the transition to electric vehicles. Among the selected studies, 41 specifically examine
premature mortality and monetized health outcomes, with only one being an observational study;
the remainder are empirical in nature. Significantly, 98% of the studies indicate a beneficial impact
of electric or hybrid electric vehicles on health (Pennington et al., 2024). A recent study analyzed
38 scholarly articles concerning electric vehicles, which include BEVs, PHEVs, and HEVs,
published from 1990 to 2023. Employing meta-regression techniques, the research evaluates the
impact of various determinants on the adoption of electric vehicles. The results highlight four
primary factors that exert a global influence: user perception, user characteristics, environmental
awareness, and barriers to adoption. Furthermore, it is observed that European nations exhibit the
most pronounced spatial effects. In light of the substantial greenhouse gas emissions produced by
China and India, the authors advocate for the large-scale adoption of electric vehicles in these
countries, along with an increase in the share of renewable energy in regions that promote electric
vehicle utilization (Y. Wang & Witlox, 2025). Table 2 presents an overview of recent studies
examining the association between electric vehicles and health outcomes, alongside their influence
on air quality, with a particular focus on research conducted within the United States. The
prevailing agreement among scholars indicates that electric vehicles contribute positively to public
health. For example, EVs play a beneficial role in the environment (Kazimi, 1997; He et al., 2019;
Wen et al., 2021; Horton et al., 2021; Singh et al., 2024). EVs may have negative consequences
that undermine their environmental benefits (Davis, 2019; Y. Li et al., 2024; Z. Chen et al., 2021).

Table 2 Recent Studies Have Examined the Relationship between Health Outcomes and Air

Pollution in the Context of Electric Vehicles

Health, air pollution and electric vehicles




Location Yes or no Topics Papers

China No Health impact and (Jietal, 2012)
environmental equity

Taiwan Yes Health benefits (Lin et al., 2020)

India Yes Air, health benefits and equity (Peshin et al., 2024)

California Yes EVs and impact on health (Limoochi & Rodriguez, 2024)

Japan Yes EVs, temperature and health (Hata et al., 2025)

California Neutral Air quality and public health co- (Y. Li et al., 2024)
benefits of 100% renewable
electricity adoption

California Yes Environmental Impact (Kazimi, 1997)

China, USA, and Yes Economic and Climate Benefits ~ (He et al, 2019)

Germany

China Yes Impacts of COVID-19 on the (Wen et al., 2021)
electric vehicle industry

China Yes EVs impact public health and air  (Horton et al., 2021)
pollution

USA Yes EVs and mortality risks of (Singh et al., 2024)
PM2.5 emissions

USA Yes Societal benefits of EVs (Malmgren, 2016)

USA Yes Impact of EVs sales on (Gujral et al., 2025)
childhood asthma

USA Neutral Environmental and economic (Z. Chen et al., 2021)
impact of EVs

USA Yes Economics of EVs (Rapson & Muehlegger, 2023)

USA Neutral Electric vehicles offer limited (Davis, 2019)
environmental benefits.

World Yes EVs and health (Pennington et al., 2024)

Germany and Italy Yes role of EVs towards low-carbon  (Bellocchi et al., 2019)
energy systems

India Yes BEVs can reduce greenhouse (Gopal et al., 2015)
gas emissions and make
renewable energy cheaper

World Yes Challenges and limitations of (Kantumuchu, 2023)

EVs

10



World Yes Global trends in EVs adoption (Y. Wang & Witlox, 2025)
and the impact of environmental
awareness, user attributes, and

barriers

Data and Variables

The data utilized in this study is derived from publicly accessible information provided by relevant
agencies of the United States federal government and the state government of California. It is
important to note that there are instances of missing data for specific years. The dataset covers a
time frame from 2010 to 2021 and includes 58 counties within California, excluding Los Angeles
County, resulting in a total sample size of 684. All data employed in this research is publicly
available. For a comprehensive description of the dataset, please consult Table 3. For an extensive

statistical analysis, refer to Table 4.

Health Impact Data

In this study, we utilize two types of health impact data. The first type is the annual number of
emergency department visits for COPD among individuals aged 25 years and older in each county
from 2010 to 2021. The second type is the crude rate of emergency department visits for asthma
per 10,000 population at the county level over the same 12-year period. Both data are sourced from

CDC. Table 3 presents a description of both datasets, while Table 4 provides summary statistics.

Table 3 Description of Variables

Variable Description Source

COPDVISITS The annual number of emergency department visits for chronic Centers for

obstructive pulmonary disease (COPD) among individuals aged 25  Disease

years and older. Control and
Prevention
ASTHMA The crude rate of emergency department visits for asthma per Centers for
10,000 population. Disease

Control and

Prevention
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The following two articles explore the relationships between COPD and age, as well as the
correlation between COPD and air quality. One article is from the Netherlands, while the other
originates from Colombia. Afonso et al. (2011) conduct a study examining the prevalence,
incidence, and lifetime risk of COPD within the general population. The researchers analyze data
from individuals aged 40 and older, sourced from the Dutch Integrated Primary Care Information
(IPCI) database, employing a two-step validation algorithm to identify cases of COPD. Their
findings reveal a significant increase in the incidence of COPD with advancing age, with a notably
higher incidence observed in males compared to females. Herrera Lopez et al. (2025) present
evidence suggesting that the incidence of exacerbations in COPD among patients residing in
Bogota is significantly correlated with prolonged exposure to elevated concentrations of nitrogen

dioxide (NO2).

Table 3 Summary Statistics

Variable Definition Mean Standard Minimum  Maximum
Deviation
Dependent Variables
COPDVISITS10K Annual number of emergency 48.042 27.146 0 163.254
department visits for COPD per
10,000 population
InCOPDVISITS10K  Log of annual number of 3.706 726 0 5.101

emergency department visits for

COPD per 10,000 population

ASTHMAI10K Crude rate of emergency 47.693 11.653 15.8 79.5
department visits for asthma per
10,000 population

InASTHMA10K Log of crude rate of emergency  3.831 272 2.76 4.376

department visits for asthma per

10,000 population

Instrumental Variables

RATEV_GAS Ratio between number of EVs .006 .01 0 .064

and number of gasoline vehicles

TEMP Average temperature in summer  71.907 6.494 56.267 93.6

TEMPSQUARED Square of temperature 5212.704 960.27 3165.938 8760.96
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MANUFACTURING  Percentage by employment 2.315 1.731 0 9.95
WILDFIRENO Number of Fires 55.067 55.398 0 262
PRECIPITATION Annual precipitation 26.493 18.541 2.06 102.62
Control Variables
In POPULATION Log of population 11.975 1.755 6.954 15.021
POPDENSITY Population per square mile 654.189 2425.181 1.417 18756.362
In INCOME Log of per capita annual 10.763 335 10.173 12.008
personal income
FARM Percentage by employment 2311 2918 0 14.53
SERVICE Percentage by employment 30.376 65.848 6.18 594.44
COVID Dummy variable Covid =1 from .167 373 0 1
2020-2021)
AGE65 Percentage of individuals aged 16.66 5.302 7.9 31
65 and olde
RACENONWHITE Proportion of individuals 18.555 10.517 4.2 52.3
identified as belonging to non-
white
UNEMPLOYMENT  Unemployment rate 9.453 3.34 2.4 18.4
RATE
HOMEOWNERSHIP  Annual homeownership 61.865 7.805 42.58 85.69
Observation 684

Dependent Variables

The dependent variables in this Poisson control function model comprise two health-related

indicators: the annual incidence of emergency department visits for COPD per 10,000 individuals

and the crude rate of emergency department visits for asthma per 10,000 individuals. As shown in

Table 4, the mean annual number of COPD visits is 48, with a variation ranging from 0 to 163.

Similarly, the mean annual number of asthma visits is also 48, with a range from 16 to 80. Figure

1 illustrates the geographic distribution of asthma emergency room visits per 10,000 individuals

across California counties in 2010. In contrast, Figure 2 presents the geographic distribution of

asthma emergency room visits per 10,000 individuals in California counties for the year 2021. A

comparison of the two figures reveals a noticeable decline in the number of asthma emergency

room visits in 2021 compared to the figures from 2010.
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Figure 1 Distribution of asthma visits per 10,000 population by county in California in 2010

The figure above illustrates the geographic distribution of asthma emergency room visits
per 10,000 individuals across California counties in 2010. It indicates that the number of visits in

Central California exceeds that in Southern California.
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Figure 2 Distribution of asthma visits per 10,000 population by county in California in 2021

Figure 2 illustrates the geographic distribution of asthma emergency room visits per 10,000
individuals across California counties for the year 2021. A comparison with Figure 3.1 indicates a
significant decline in the number of visits in all counties. The overall trend from 2010 to 2021
shows a substantial decrease in asthma incidents in California. This phenomenon may be attributed
to varied factors. Furthermore, the current adoption rate of electric vehicles remains relatively low,

which may have some short-term impacts.

Explanatory Variables
The explanatory variables in this model consist of three indicators related to air quality: the median
Air Quality Index, the maximum annual mean concentration of particulate matter, and the number

of days on which ozone levels exceed established air quality standards. According to Table 3, The
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annual average median AQI by county is 47, with a range from 9 to 102. The annual average
PM2.5 level by county is 9.91 pg/m?, with a range from 3 pg/m?® to 39.10 pg/m?, is greater than the
EPA's primary annual standard for PM2.5 (9.0 pg/m?). The annual average number of days on

which ozone levels exceed air quality standards is 18, ranging from 0 to 154.

Instrumental Variables

There are six instrumental variables as follows: the proportion of electric vehicles to internal
combustion engine vehicles; the average summer temperature; the square of the average summer
temperature; the percentage of annual employment in the manufacturing industry; the annual
number of wildfires; and the average annual precipitation. According to Table 4, the mean county-
level of annual EVs per 10,000 population to the annual holdings of gasoline vehicles per 10,000
population is 0.006, with a range from 0 to 0.064. Similarly, the annual summer temperature has a
mean of 71.91°F, with a range from 56.27°F to 93.60°F. The average annual percentage of
statistics in the manufacturing industry by county is 2.32%, ranging from 0% to 9.95%. The
average annual number of wildfires is 55, with a range from 0 to 262. The mean annual
precipitation by county is 26.49 inches, with a range from 2.06 to 102.62 inches. The rationale for

selecting these variables as instrumental variables will be discussed in the following sections.

Poisson Control Function Model and Hypotheses

In this research, the two dependent variables under investigation are the annual emergency
department visits for chronic obstructive pulmonary disease among individuals aged 25 and older,
and the crude rate of emergency department visits for asthma per 10,000 population. Both variables
are classified as count data. It is posited that these counts follow a Poisson distribution, with the
logarithm of the expected counts being a linear function of the predictor variables. Consequently,
Poisson regression is employed for this analysis. The Poisson control function (CF) model
integrates Poisson regression with control function methodology to address endogeneity concerns
within the model. This approach is particularly beneficial when certain predictor variables in the
Poisson regression are correlated with the error term, as neglecting to account for this correlation
can result in biased estimates. The control function method is a strategy designed to mitigate

endogeneity issues in regression models. Endogeneity arises when predictor variables are
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correlated with the model's error term, leading to biased coefficient estimates. The control function
method involves estimating a "first-stage" model for the endogenous variable and subsequently
incorporating the residuals from this model as a control function in the primary "second stage"
model (i.e., Poisson regression). By integrating the control function into the main model, the
correlation between the endogenous variable and the error term is reduced, thereby minimizing
estimation bias. In the context of the Poisson control function model, the control function (the
residuals from the first-stage model) is included as a predictor variable within the Poisson
regression framework. This methodology allows researchers to estimate the causal effects of
predictor variables on count outcomes while effectively addressing endogeneity. The primary
advantage of the Poisson control function model is its ability to estimate causal effects in the
presence of endogeneity. This model offers a robust framework for analyzing count data that may
be affected by endogeneity issues, thereby broadening the applicability of Poisson regression in
more complex scenarios. In conclusion, the Poisson control function model serves as a valuable
tool for analyzing count data when endogeneity is a concern, facilitating the attainment of more

reliable estimates regarding the relationships between variables.

The following two articles focus on econometric theory and employ control function
models. Each article outlines the necessary conditions and principles for applying this
methodology, with a particular emphasis on its effectiveness in addressing endogeneity concerns.
Lee (2007) investigates a linear triangular simultaneous equation model that incorporates
conditional quantile restrictions. The author employs the control function approach to address the
issue of endogeneity and introduces a straightforward two-step estimation procedure. In the first
step, the residuals obtained from estimating the reduced-form equation for the endogenous
explanatory variables are calculated. These residuals are then included as an additional explanatory
variable in a non-parametric format within the primary equation during the second step of the
estimation process. The analysis assumes that the explanatory variables are observable, and no
constraints are imposed on the relationship between the residuals and the disturbance terms in the
equations. Ultimately, the paper's significant contributions lie in establishing the regularity
conditions necessary for the consistency and asymptotic normality of the two-step estimator.
Wooldridge (2015) elucidates the application of the control function method to address the

challenges posed by endogenous explanatory variables (EEVs) in both linear and nonlinear models.
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A critical prerequisite for the CF method to yield valid interpretations is the acknowledgment that
the "insertion" method is associated with inconsistent parameter estimates and partial effect

estimates.

Based on existing literature and logical reasoning, the model is predicated on the following
two hypotheses:
Hypothesis One: There is a positive correlation between elevated levels of air pollution and an
increase in medical visits related to COPD.
Hypothesis Two: A greater prevalence of electric vehicles is linked to a reduction in the incidence

of visits associated with respiratory diseases.

Estimation Strategy

This model is based on the findings from the previous chapter and employs a Poisson control
function model combined with an instrumental variable approach to obtain regression coefficients
to minimize bias as much as possible. First, we will use the fixed effects panel regression from
Chapter Two as the first stage. The independent variables are divided into two main categories:
instrumental variables and control variables. After obtaining the residuals of the outcome variable
from the first stage, we will include both the outcome variable and its residuals into the second
stage of the Poisson regression to obtain the Poisson regression coefficients using instrumental

variables. Please refer to Equations (1) and (2) for the two-stage regression methodology.

PM25;; = By + BLRATEV_GAS + [, TEMP + f3TEMPSQUARED + B,MANUFACTURING +
BsWILDFIRESNO + L¢PRECIPITATION + B,InPOPULATION + gPOPDENSITY +
BolnINCOME + B,oFARM + B11SERVICE + (,,COVID + B,3AGE65 +
P1sRACENONWHITE + B,sUNEMPLOYMENTRATE + f1cHOMEOWNERSHIP +
He U + e

(1)
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Log(COPDVISITS10K;;)
=yo + Y1PM25 + y,PM2505iquais + ¥V3INPOPULATION + y,POPDENSITY
+ ¥sInINCOME + ysFARM + y,SERVICE + ygCOVID + yoAGE65
+ ¥1oRACENONWHITE + y;1UNEMPLOYMENTRATE
+ Y1, HOMEOWNERSHIP + &;;
2)
In equation (1), the dependent variables may denote one of three air pollutants: the median
air quality index (MEDIANAQI), the maximum annual mean concentration of particulate matter
(PM25), and the frequency of days on which ozone levels surpass established air quality standards
(O3). The instrumental variables employed in this analysis include six factors: the proportion of
EVs in relation to gasoline-powered vehicles (RATEV_GAS), the average summer temperature
(TEMP), the square of the average summer temperature (TEMPSQUARED), the percentage of
annual employment within the manufacturing sector (MANUFACTURING), the annual count of
wildfires (WILDFIRESNO), and the average annual precipitation (PRECIPITATION).
Furthermore, the model incorporates ten control variables: the natural logarithm of annual
population by county (InPOPULATION), annual population density by county (POPDENSITY),
the natural logarithm of per capita annual personal income by county (InNINCOME), the percentage
of annual employment in the agricultural sector (FARM), the percentage of annual employment in
the service sector (SERVICE), a binary variable indicating the COVID-19 pandemic (COVID =1
for the years 2020-2021), the annual percentage of individuals aged 65 and older (AGEG65), the
proportion of individuals identified as non-white by county (RACENONWHITE), the annual
unemployment rate by county (UNEMPLOYMENTRATE), and the annual homeownership rate
(HOMEOWNERSHIP). Additionally, the model accounts for time fixed effects and county fixed

effects, along with error terms.

In equation (2), the dependent variables are restricted to two specific health outcomes:
COPDVISITS10K and ASTHMA10K. The primary parameter of interest is the coefficient y; that
clarifies the association between health outcomes and air pollutants. A negative coefficient implies
that higher levels of air pollution are advantageous for health, while a positive coefficient suggests

that air pollution may result in significant health detriment. Since equation (1) already includes a
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time variable, and adding a time variable to equation (2) produces the same regression results as

the current equation (2), there is no time variable included in equation (2) here.

Empirical Results

This section is divided into six subsections. The results section presents six groups of Poisson
regression outcomes, along with comparisons of three sets of regression coefficients. It also
includes Poisson regression results without IVs and the Generalized Method of Moments (GMM)
results. Each table or figure illustrates results derived from four distinct sets of control variables.
Additionally, the section includes model diagnostics, endogeneity assessments, model selection,

robustness check and bootstrapping methods.

Model Diagnostics

As illustrated in Figure 3, there appears to be a correlation between the annual number of
emergency department visits for COPD and the median air quality index. This relationship is
represented by the fitted lines across various counties in California from 2010 to 2021. The left
fitted line includes data from 58 counties, while the right fitted line includes data from 57 counties,
excluding Los Angeles County. By comparing the two figures, we observe that the slope of the
line in the right image is steeper. This suggests that it is reasonable to exclude the data from Los
Angeles County. Furthermore, both figures indicate that an increase in the median air quality index
is associated with an increase in the annual number of emergency department visits for COPD,

suggesting that deteriorating air quality has the potential to cause health damage.
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Figure 3 Line fitness between annual number of emergency department visits for COPD and

median AQI by county in California from 2010 to 2021

Endogeneity

It is always hard to find a legitimate instrument variable. However, it is still worth doing the
endogeneity test for a potential IV. In this model, the IV regression approach uses six instrumental
variable correlated with the endogenous predictor variable (air pollutants) but not with the health
outcome variables. Unfortunately, there is no formal panel data test for exclusion restrictions.
From Table 5, Table 6, and Table 7, we observe that among the six instrumental variables, the
ratio of electric vehicles to gasoline vehicles is significant, as is the employment rate in the
manufacturing sector. Furthermore, the F-test values in the first stage are approximately 5, and the
regression results from this stage are satisfactory. At the same time, the highly significant residuals
in the Poisson regression indicate that there is exclusivity between the instrumental variables in
the first stage and the outcome variable in the second stage. Consequently, we select these six

instrumental variables because they potentially satisfy both the relevance and exclusivity criteria.
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Results

From Table 5, we can see the quantitative relationship between annual emergency room visits for
two types of respiratory diseases and three indicators of air quality. Using three different methods,
we obtained different regression coefficients and varying levels of statistical significance. For
specific information, please refer to the following introduction. The results presented in Table 6,
which does not employ instrumental variables, indicate that the regression coefficients for COPD
and median air quality are positive but not statistically significant. The results presented in Table
7, which employ instrumental variables, indicate that the regression coefficients for COPD and
median air quality are both positive and highly significant. The fourth group outperforms the others,
as it has the lowest AIC value. Table 8 presents the results from GMM, where the regression
coefficients are also positive. Although it is not as significant as the results obtained using

instrumental variables, it supports the findings presented in Table 7.

Table 4 Regression Results for Health Outcomes and Air Pollutants

Results COPD ASTHMA
NO IVs IVs GMM NO IVs IVs GMM
AQI
+ 4Kk 4% + Sk -
NO IVs IVs GMM NO IVs IVs GMM
PM25
4k oKk ok kK 4k kKK
NO IVs IVs GMM NO IVs IVs GMM
03
4ok ko 4k _ koK ko

Table 5 Poisson Model without IVs between COPD and AQI

() @) €) 4)
VARIABLES COPDVisits10k ~ COPDVisitsl0ok ~ COPDVisitsl0k ~ COPDVisits10k
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MedianAQI 0.00124 0.00264 0.00251 0.00237
-0.00156 -0.00182 -0.0018 -0.00155
InPopulation -0.571 -0.919%* -0.860** -1.105%*
-0.476 -0.422 -0.421 -0.443
Popdensity 9.31e-05%* -0.000106** -8.80E-05 -7.47E-05
-4.41E-05 -5.38E-05 -5.48E-05 -5.32E-05
COVID -0.284*** -0.397*%* -0.380%** -0.351%**
-0.0234 -0.0314 -0.0317 -0.0334
Age65 0.0249%** -0.00557 -0.00415 -0.00514
-0.00882 -0.00821 -0.00792 -0.00825
RaceNonWhite -0.0122 -0.0680%*** -0.0653*** -0.0697***
-0.0127 -0.0196 -0.0214 -0.0219
UnemploymentRate 0.00367 0.00423 0.000649
-0.00608 -0.00584 -0.00594
Inlncome 1.006*** 0.920%** 0.904%**
-0.218 -0.218 -0.213
Farm 0.0496 0.039
-0.0462 -0.0425
Service 0.000820* 0.00058
-0.000487 -0.000474
Homeownership -0.00995**
-0.0047
Observations 672 672 672 672
Number of county 56 56 56 56
AIC 4305.5 4251.0 4248.4 4239.4
BIC 4332.6 4287.1 4293.5 4289.1

Robust standard errors in parentheses

Table 6 Poisson Model with IVs between COPD and AQI

skokok p<0~01, * ok p<0.05’ * p<0.1

23

(M ) ) (4)
VARIABLES COPDVisits10k ~ COPDVisits1l0k ~ COPDVisits10k  COPDVisits10k
MedianAQI 0.0121 %% 0.0200%* 0.0191 %% 0.0183 %
-0.00357 -0.00349 -0.00342 -0.00319
MedianAQI_resid -0.0130%** -0.0200%%** -0.0191%*%* -0.0184%**
-0.00428 -0.00406 -0.004 -0.0037



InPopulation -0.339 -0.728* -0.697 -0.945**
-0.483 -0.426 -0.425 -0.445
Popdensity 9.22e-05%* -0.000123** -0.000109** -9.45e-05%*
-4.41E-05 -5.40E-05 -5.43E-05 -5.25E-05
COVID -0.297*** -0.436%*** -0.422%*%* -0.392%**
-0.0245 -0.0337 -0.0333 -0.0335
Age65 0.0238*** -0.0157* -0.0143* -0.0148*
-0.00904 -0.00815 -0.00766 -0.00804
RaceNonWhite -0.00701 -0.0744%*** -0.0718*** -0.0757%**
-0.0126 -0.0183 -0.0198 -0.0205
UnemploymentRate -0.00284 -0.00219 -0.00544
-0.00578 -0.00557 -0.00579
Inlncome 1.157%** 1.088%** 1.065%**
-0.211 -0.207 -0.204
Farm 0.0374 0.0277
-0.044 -0.041
Service 0.000438 0.000219
-0.000487 -0.000479
Homeownership -0.00970%*%*
-0.00454
Observations 672 672 672 672
Number of county 56 56 56 56
AIC 4291.8 4221.5 4222.1 4215.2
BIC 4323.3 4262.1 4271.7 4269.3

Robust standard errors in parentheses % p<0.01, ** p<0.05, * p<0.1

Figure 4 presents four distinct sets of regression coefficients derived from Table 7. Each
of these sets exhibits positive coefficients, with values ranging from 0.01 to 0.02. Notably, the

fourth set with the most control variables is characterized by the lowest AIC value.
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Regression Coefficients between COPDVISITS and MEDIANAQI
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Figure 4 Regression coefficients between COPDVISITS and MEDIANAQI

Table 7 GMM Model with IVs between COPD and AQI

Q) 2 3 “
VARIABLES InCOPDVisits10k  InCOPDVisits10k  InCOPDVisits10k  InCOPDVisits10k
Median AQI 0.00425 0.0161** 0.0132%* 0.0127*
-0.00634 -0.00747 -0.00743 -0.0074
InPopulation -0.341 -0.43 -0.443 -0.549
-0.336 -0.344 -0.334 -0.353
Popdensity 7.41E-05 -7.29E-05 -5.17E-05 -4.73E-05
-0.000102 -0.000112 -0.00011 -0.000109
COVID -0.309%** -0.410%** -0.388*** -0.377***
-0.0243 -0.0351 -0.036 -0.0375
Age65 0.0265%** -0.000724 0.00149 0.00148
-0.00579 -0.0092 -0.00907 -0.00903
RaceNonWhite -0.0163 -0.0506%*** -0.0443%** -0.0446%**
-0.0119 -0.0148 -0.0149 -0.0148
UnemploymentRate -0.00233 -0.000507 -0.00147
-0.00525 -0.00521 -0.00531
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InIncome 0.728*** 0.626%** 0.615%**

-0.168 -0.171 -0.171
Farm 0.0549** 0.0512*
-0.0279 -0.0281
Service 0.000211 0.000144
-0.00107 -0.00107
Homeownership -0.00348
-0.00391
Observations 684 684 684 684
Number of county 57 57 57 57
AIC -410.5 -337.3 -371.1 -374.4
BIC -383.4 -301.1 -325.9 -324.6

Standard errors in parentheses % p<0.01, ** p<0.05, * p<0.1
The findings presented in Table 9 indicate that, in the absence of instrumental variables,
the regression coefficients for asthma visits in relation to median air quality are positive yet
statistically insignificant. Conversely, the results displayed in Table 10, which incorporate
instrumental variables, reveal that the regression coefficients for asthma visits and median air
quality are both positive and statistically significant. The second model is favored over the
alternatives due to its lowest AIC value. Additionally, Table 11 outlines GMM results, which
demonstrate a negative and statistically insignificant regression coefficient, thereby contradicting

the outcomes observed in the previous two methodologies.

Table 8 Poisson Model without IVs between ASTHMA and AQI

O] 2 A3) “)

VARIABLES AsthmalOk AsthmalOk AsthmalOk AsthmalOk
Median AQI 0.00177 0.000907 0.000862 0.000873

-0.00111 -0.000907 -0.000896 -0.000942
InPopulation -0.327% -0.105 -0.0934 0.00321

-0.187 -0.177 -0.175 -0.174

Popdensity -0.000154*** -0.000195%** -0.000198*** -0.000202***

-2.22E-05 -2.48E-05 -2.42E-05 -2.46E-05
COVID -0.227%** -0.229%** -0.226%** -0.235%**

-0.00785 -0.00948 -0.0106 -0.0142



Age65 -0.0239%** -0.0194%** -0.0189%** -0.0185%**
-0.00287 -0.00412 -0.0041 -0.00418
RaceNonWhite -0.00434 -0.00368 -0.00569 -0.00539
-0.00621 -0.00747 -0.00819 -0.00801
UnemploymentRate 0.0170%** 0.0172%** 0.0183%***
-0.00242 -0.00246 -0.00277
InIncome 0.125%* 0.119 0.125
-0.0715 -0.0806 -0.0851
Farm 0.00141 0.00485
-0.0163 -0.0161
Service 0.000844%** 0.000919%**
-0.00024 -0.000261
Homeownership 0.00307
-0.00203
Observations 684 684 684 684
Number of county 57 57 57 57
AIC 3958.4 3935.1 3937.9 3938.9
BIC 3985.6 3971.3 3983.2 3988.7

Robust standard errors in parentheses

Table 9 Poisson Model with IVs between ASTHMA and AQI

skokok p<0~01, * ok p<0.05’ * p<0.1

0 @) 3) @)
VARIABLES AsthmalOk AsthmalOk AsthmalOk AsthmalOk
MedianAQI 0.0149%** 0.0114%** 0.0113%** 0.0114%**
-0.00106 -0.00124 -0.00124 -0.00126
InPopulation -0.0181 0.0116 0.0177 0.125
-0.169 -0.185 -0.183 -0.175
Popdensity -0.000153*** -0.000208*** -0.000212%** -0.000216***
-1.75E-05 -2.27E-05 -2.17E-05 -2.18E-05
COVID -0.237*** -0.252%** -0.251%** -0.261***
-0.00677 -0.00909 -0.00967 -0.0129
Age65 -0.0252%** -0.0261*** -0.0257*** -0.0254***
-0.00255 -0.00358 -0.00356 -0.00362
RaceNonWhite -0.00213 -0.00804 -0.0101 -0.00986
-0.00463 -0.00661 -0.00724 -0.0071
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UnemploymentRate 0.0126%** 0.0128%** 0.0139%**
-0.00253 -0.00259 -0.00292
Inlncome 0.219%** 0.223%** 0.229%**
-0.0648 -0.07 -0.0736
Farm -0.00455 -0.000875
-0.0146 -0.0146
Service 0.000592%** 0.000673**
-0.000243 -0.000264
Homeownership 0.00334*
-0.00203
Observations 684 684 684 684
Number of county 57 57 57 57
AIC 39353 3924.9 3928.0 3928.8
BIC 3967.0 3965.6 3977.8 3983.1

Standard errors in parentheses ¥ p<0.01, ** p<0.05, * p<0.1

Figure 5 presents four distinct sets of regression coefficients derived from Table 10. Each

of these sets exhibits positive values, with coefficients ranging from 0.011 to 0.015. Notably, the

second set is characterized by the lowest AIC value.
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Figure 5 Regression coefficients between ASTHMA and MEDIANAQI

Table 10 GMM Model with IVs between ASTHMA and AQI

1 ) 3) “)
VARIABLES InAsthmalOK InAsthmalOK InAsthmalOK InAsthmalOK
MedianAQI -0.008 -0.00677 -0.0081 -0.00695
-0.00546 -0.00585 -0.00604 -0.00597
InPopulation -0.519%* -0.158 -0.157 -0.0203
-0.29 -0.269 -0.272 -0.285
Popdensity -0.000186** -0.000226** -0.000226** -0.000233***
-8.74E-05 -8.78E-05 -8.92E-05 -8.83E-05
COVID -0.265%** -0.265%** -0.257*** -0.271%**
-0.021 -0.0275 -0.0293 -0.0303
Age65 -0.0222%** -0.0153** -0.0139* -0.0143*
-0.00499 -0.0072 -0.00738 -0.00728
RaceNonWhite -0.00636 -0.00347 -0.00502 -0.00488
-0.0102 -0.0115 -0.0121 -0.012
UnemploymentRate 0.0219%** 0.0229%** 0.0238***
-0.00411 -0.00424 -0.00429
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InIncome 0.118 0.092 0.112

-0.132 -0.139 -0.138
Farm 0.00578 0.01
-0.0227 -0.0227
Service 0.00121 0.00128
-0.000872 -0.000863
Homeowership 0.00427
-0.00316
Observations 684 684 684 684
Number of county 57 57 57 57
AIC -614.9 -672.3 -653.8 -668.4
BIC -587.8 -636.0 -608.5 -618.6
Standard errors in parentheses % p<0.01, ** p<0.05, * p<0.1

The results in Table 12 show that without using instrumental variables, the regression
coefficient for COPD and PM2.5 is both positive and highly significant, with the fourth group
exhibiting the lowest AIC value. The results in Table 13 indicate that when employing instrumental
variables, the regression coefficient for COPD and PM2.5 is both positive and highly significant.
Additionally, the fourth group exhibits the lowest AIC value. Table 14 presents the results from
GMM, where the regression coefficient is positive and, similar to the results obtained using

instrumental variables, is highly significant. This supports the findings presented in Table 13.

Table 11 Poisson Model without IVs between COPD and PM25

(1) (2) (3) (4)

VARIABLES COPDVisits10k ~ COPDVisits10k ~ COPDVisits10k ~ COPDVisits10k
PM25 0.0130%** 0.0131%** 0.0127%** 0.0116%***
-0.00361 -0.00334 -0.00331 -0.00319
InPopulation -0.179 -0.684 -0.589 -0.958*
-0.58 -0.561 -0.569 -0.579
Popdensity 0.000138** -1.37E-05 1.59E-05 4.03E-05
-5.94E-05 -6.75E-05 -6.89E-05 -6.66E-05
COVID -0.551*** -0.624*** -0.601 *** -0.559***
-0.0341 -0.036 -0.0345 -0.0367
Age65 0.0279%** 5.99E-05 0.00271 0.00151
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-0.00982 -0.0114 -0.0108 -0.0113

RaceNonWhite -0.0409** -0.0854%** -0.0787%** -0.0849%**
-0.0171 -0.0234 -0.026 -0.0267
UnemploymentRate 0.00111 0.00163 -0.00407
-0.00615 -0.00587 -0.00587
InIncome 0.826%** 0.686** 0.651**
-0.277 -0.275 -0.269
Farm 0.0669 0.0535
-0.0465 -0.0414
Service 0.000508 8.41E-05
-0.000569 -0.000542
Homeowership -0.0152%**
-0.00542
Observations 616 616 616 616
Number of county 56 56 56 56
AIC 3795.8 3767.8 3763.0 3743.1
BIC 38223 3803.2 3807.2 3791.8
Robust standard errors in parentheses *H* p<0.01, ** p<0.05, * p<0.1

Table 12 Poisson Model with IVs between COPD and PM25

(1 2) 3) “4)
VARIABLES COPDVisits10k  COPDVisits10k ~ COPDVisits10k ~ COPDVisits10k
PM25 0.0145%** 0.0149%** 0.0132%** 0.0129%**
-0.00547 -0.00491 -0.00465 -0.00432
PM25_resid -0.00265 -0.0031 -0.00097 -0.0022
-0.00852 -0.00786 -0.00772 -0.00759
InPopulation -0.157 -0.656 -0.581 -0.945
-0.586 -0.558 -0.566 -0.575
Popdensity 0.000139** -1.28E-05 1.60E-05 4.10E-05
-5.94E-05 -6.72E-05 -6.87E-05 -6.63E-05
COVID -0.558*** -0.631*** -0.603*** -0.564***
-0.0407 -0.0443 -0.0423 -0.0417
Age65 0.0277%*** -0.000197 0.00261 0.00127
-0.00988 -0.0116 -0.011 -0.0115
RaceNonWhite -0.0414** -0.0857*** -0.0788*** -0.0853*#*
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-0.0169 -0.0236 -0.0261 -0.0268

UnemploymentRate 0.00134 0.0017 -0.00399
-0.0061 -0.00589 -0.00584
Inlncome 0.827%** 0.687** 0.653%*
-0.278 -0.277 -0.27
Farm 0.0666 0.0527
-0.0465 -0.0416
Service 0.0005 6.14E-05
-0.000567 -0.000547
Homeowership -0.0153%%**
-0.00557
Observations 616 616 616 616
Number of county 56 56 56 56
AIC 3797.6 3769.6 3765.0 3745.0
BIC 3828.5 3809.4 3813.6 3798.1

Robust standard errors in parentheses

Figure 6 shows the four sets of different regression coefficients from Table 13. All four
coefficients are positive, ranging from 0.012 to 0.015, with the fourth set having the lowest AIC

value.

32



Regression Coefficients between COPDVISITS and PM25

.01 .015 .02 .025
1 1 1

.005
1

PM2.5

e M1 M2
= M3 A M4

Figure 6 Regression coefficients between COPDVISITS and PM25

Table 13 GMM Model with IVs between COPD and PM25

(1)

(2)

(3)

(4)

VARIABLES InCOPDVisits10k  InCOPDVisits10k  InCOPDVisits10k InCOPDVisits10k
PM25 0.0434%** 0.0404*** 0.0363*** 0.0317***
-0.01 -0.00896 -0.0089 -0.00834
InPopulation 0.241 0.0206 0.0132 -0.341
-0.342 -0.357 -0.349 -0.351
Popdensity 0.000133 6.62E-05 9.46E-05 0.000107
-9.78E-05 -0.000101 -9.96E-05 -9.74E-05
COVID -0.691*** -0.708%** -0.674%** -0.630%**
-0.0484 -0.0471 -0.0481 -0.046
Age65 0.0211%** 0.0111 0.0129 0.0127
-0.00625 -0.00825 -0.00812 -0.00793
RaceNonWhite -0.0402%** -0.0528*** -0.0429%** -0.0430%***
-0.0129 -0.0143 -0.0146 -0.0142
UnemploymentRate 0.00211 0.0023 -0.00171
-0.00408 -0.004 -0.00405
InIncome 0.319** 0.201 0.166
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-0.156 -0.159 -0.155

Farm 0.0706*** 0.0603**
-0.0267 -0.0264
Service -0.000541 -0.000785
-0.00107 -0.00105
Homeownership -0.0113*%**
-0.00372
Observations 627 627 627 627
R-squared 0.4 0.419 0.444 0.47
Number of county 57 57 57 57
AIC -447.2 -464.1 -487.8 -515.3
BIC -420.6 -428.6 -443.4 -466.5

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
The results in Table 15 indicate that, without using instrumental variables, the regression
coefficients for ASTHMA and PM2.5 are both positive and significant, with the second group
having the lowest AIC value. The results in Table 16 indicate that when employing instrumental
variables, the regression coefficients for ASTHMA and PM2.5 are both positive and highly
significant. Similarly, the second group exhibits the lowest AIC value. Table 17 presents the results
from GMM, where the regression coefficients are also positive and, as the results obtained using

instrumental variables, are highly significant, supporting the findings in Table 16.

Table 14 Poisson Model without IVs between ASTHMA and PM25

(1)

(2)

(3)

(4)

VARIABLES AsthmalOk AsthmalOk AsthmalOk AsthmalOk
PM25 0.003 0.00367** 0.00347** 0.00349%%**
-0.00192 -0.00149 -0.00146 -0.00132
InPopulation -0.227 0.266 0.284 0.199
-0.215 -0.167 -0.173 -0.188
Popdensity -0.000128*** -8.75e-05%** -8.00e-05%** -7.60e-05%**
-1.58E-05 -1.46E-05 -1.49E-05 -1.68E-05
COVID -0.592 % -0.558%%* -0.550%** -0.543%%*
-0.0126 -0.0134 -0.0135 -0.015
Age65 -0.0259%** -0.00855* -0.00786* -0.00827*
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-0.00367 -0.00441 -0.0044 -0.00453
RaceNonWhite -0.0141 0.000506 0.00227 0.0021
-0.0105 -0.00718 -0.00749 -0.00779
UnemploymentRate 0.0116%** 0.0119%** 0.0109%**
-0.00197 -0.00195 -0.00201
InIncome -0.276%** -0.316*** -0.323%**
-0.0639 -0.065 -0.0693
Farm 0.0206** 0.0173%x*
-0.00868 -0.00849
Service 0.000323* 0.000236
-0.000179 -0.000189
Homeownership -0.00300*
-0.00168
Observations 627 627 627 627
Number of county 57 57 57 57
AIC 3234.6 3218.4 32214 32225
BIC 3261.3 3253.9 3265.8 32714

Robust standard errors in parentheses

Table 15 Poisson Model with [Vs between ASTHMA and PM25

ok ok p<0-01, *k p<0.05, * p<0'1

(1)

(2)

(3)

(4)

VARIABLES AsthmalOk AsthmalOk AsthmalOk AsthmalOk
PM25 0.00731*** 0.00926*** 0.00878*** 0.00877***
-0.0013 -0.0012 -0.00118 -0.00116
InPopulation -0.181 0.331%** 0.343** 0.249
-0.213 -0.157 -0.163 -0.18
Popdensity -0.000125%** -8.52e-05%** -7.86e-05%** -7.41e-05%**
-1.51E-05 -1.45E-05 -1.50E-05 -1.67E-05
COVID -0.608*** -0.579%** -0.571%** -0.564***
-0.0119 -0.0119 -0.0121 -0.014
Age65 -0.0268*** -0.00968** -0.00903** -0.00948**
-0.00356 -0.00425 -0.00426 -0.00435
RaceNonWhite -0.0149 -0.000628 0.00105 0.000815
-0.0101 -0.0066 -0.00694 -0.00728
UnemploymentRate 0.0122%** 0.0123%** 0.0112%**
-0.0019 -0.0019 -0.00195
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InIncome

-0.270%** -0.305%** -0.313%**
-0.0626 -0.0635 -0.0678
Farm 0.0182%* 0.0145*
-0.00872 -0.00858
Service 0.000247 0.000152
-0.000179 -0.000187
Homeownership -0.00334*
-0.00172
Observations 627 627 627 627
Number of county 57 57 57 57
AIC 32354 32183 3221.5 3222.7
BIC 3266.5 3258.3 3270.4 3276.0

Robust standard errors in parentheses

Figure 7 presents four distinct sets of regression coefficients derived from Table 3.16. Each

% p<0.01, ** p<0.05, * p<0.1

of these sets exhibits positive coefficients, with values ranging from 0.007 to 0.01. Notably, the

second set is characterized by the lowest AIC value.
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Figure 7 Regression coefficients between ASTHMA and PM25

Table 16 GMM Model with IVs between ASTHMA and PM25

)] () 3) “)
VARIABLES InAsthmalOK InAsthmalOK InAsthmalOK InAsthmalOK
PM25 0.0236%** 0.0164*** 0.0151*** 0.0142%**
-0.00476 -0.00362 -0.0036 -0.0034
InPopulation 0.0375 0.415%** 0.413%%* 0.302%**
-0.163 -0.144 -0.141 -0.143
Popdensity -0.000126*** -7.82e-05* -7.19¢-05%* -6.74e-05%*
-4.65E-05 -4.08E-05 -4.03E-05 -3.97E-05
COVID -0.668*** -0.598*** -0.587*** -0.575%**
-0.023 -0.019 -0.0195 -0.0188
Age65 -0.03071*** -0.0105%*** -0.00991*** -0.01071***
-0.00297 -0.00333 -0.00328 -0.00324
RaceNonWhite -0.01971*** 8.69E-05 0.00209 0.00192
-0.00615 -0.00577 -0.00589 -0.0058
UnemploymentRate 0.0124%** 0.0125%** 0.0112%**
-0.00165 -0.00162 -0.00165
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InIncome -0.310*** -0.343*** -0.354***

-0.0628 -0.0643 -0.0633
Farm 0.0189% 0.0151
-0.0108 -0.0108
Service 0.000159 6.65E-05
-0.000431 -0.000427
Homeownership -0.00380**
-0.00152
Observations 627 627 627 627
R-squared 0.856 0.9 0.904 0.906
Number of county 57 57 57 57
AIC -1378.9 -1602.4 -1622.8 -1640.0
BIC -1352.3 -1566.9 -1578.4 -1591.1
Standard errors in parentheses % p<0.01, ** p<0.05, * p<0.1

The findings presented in Table 18 indicate that, in the absence of instrumental variables,
the regression coefficients for COPD in relation to O3 are both positive and statistically significant,
with the third group exhibiting the lowest AIC value. Conversely, the results in Table 19
demonstrate that when instrumental variables are employed, the regression coefficients for COPD
and O3 remain positive and are highly significant, with the fourth group reflecting the lowest AIC
value. Furthermore, Table 20 outlines the GMM results, which also reveal a positive regression
coefficient; however, only the coefficient from the first group shows mild significance, thereby

corroborating the results obtained in Table 19.

Table 17 Poisson Model without IVs between COPD and O3

(1) (2) (3) (4)

VARIABLES COPDVisits10k  COPDVisits10k ~ COPDVisits10k ~ COPDVisits10k
03 0.00157 0.00221** 0.00207* 0.00195*
-0.00113 -0.00111 -0.00112 -0.00108
InPopulation -0.157 -0.673 -0.58 -0.965*
-0.587 -0.569 -0.578 -0.585
Popdensity 0.000117* -4.35E-05 -1.28E-05 1.46E-05
-5.97E-05 -6.96E-05 -7.05E-05 -6.80E-05
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COVID -0.504*** -0.581#** -0.559*** -0.519%***
-0.0351 -0.0333 -0.0327 -0.036
Age65 0.0316%*** 0.00188 0.00458 0.00311
-0.0102 -0.0116 -0.011 -0.0115
RaceNonWhite -0.0380%** -0.0857%** -0.0796%** -0.0863%**
-0.0175 -0.0238 -0.0263 -0.027
UnemploymentRate 0.000291 0.00086 -0.00509
-0.00607 -0.00577 -0.00576
Inlncome 0.872%** 0.730%** 0.692%**
-0.278 -0.272 -0.268
Farm 0.067 0.0527
-0.0481 -0.0424
Service 0.000644 0.00019
-0.000569 -0.000544
Homeownership -0.0159***
-0.00556
Observations 616 616 616 616
Number of county 56 56 56 56
AIC 3811.4 3779.9 3774.7 3752.4
BIC 3837.9 3815.2 3818.9 3801.1

Robust standard errors in parentheses

Table 18 Poisson Model with IVs between COPD and O3

% p<0.01, ** p<0.05, * p<0.1

(1 2) 3) “4)
VARIABLES COPDVisits10k ~ COPDVisits10k ~ COPDVisits10k ~ COPDVisits10k
03 0.00367 0.00648*** 0.00619*** 0.00573***
-0.00243 -0.00223 -0.00222 -0.00217
InPopulation -0.0462 -0.526 -0.444 -0.818
-0.638 -0.606 -0.61 -0.62
Popdensity 0.000107* -7.94E-05 -5.11E-05 -2.18E-05
-5.96E-05 -6.58E-05 -6.54E-05 -6.40E-05
COVID -0.507%** -0.597%** -0.577%** -0.538%**
-0.0367 -0.0356 -0.0347 -0.0376
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Age65 0.0329%** 0.000394 0.00305 0.00187

-0.0106 -0.0115 -0.0109 -0.0114
RaceNonWhite -0.0382%* -0.0931%** -0.0874%** -0.0931%**
-0.0176 -0.024 -0.0263 -0.0274
UnemploymentRate -0.000817 -0.000269 -0.00577
-0.00621 -0.00591 -0.00588
InIncome 0.975%** 0.844%** 0.797%**
-0.267 -0.255 -0.254
Farm 0.0589 0.0463
-0.0487 -0.0427
Service 0.000603 0.000174
-0.000577 -0.00055
Homeownership -0.0150%***
-0.0056
Observations 616 616 616 616
Number of county 56 56 56 56
AIC 3811.5 37747 3769.8 3748.7
BIC 3842.4 3814.5 3818.4 3801.8
Robust standard errors in parentheses % p<0.01, ** p<0.05, * p<0.1

Figure 8 illustrates four separate sets of regression coefficients obtained from Table 19.
Each set demonstrates positive coefficients, with values spanning from 0.003 to 0.007. It is

noteworthy that the fourth set is distinguished by having the lowest AIC value.
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Figure 8 Regression coefficients between COPD visits and O3

Table 19 GMM Model with IVs between COPD and O3

Q) 2 3 “
VARIABLES InCOPDVisits10k  InCOPDVisits10k  InCOPDVisits10k  InCOPDVisits10k
03 0.0118* 0.00305 0.000851 -0.000668
-0.00681 -0.00468 -0.00455 -0.00457
InPopulation 0.509 -0.313 -0.352 -0.682*
-0.541 -0.383 -0.374 -0.4
Popdensity 5.70E-05 2.09E-05 7.06E-05 9.55E-05
-0.000107 -0.000103 -0.000103 -0.000104
COVID -0.535%** -0.558*** -0.528*** -0.500%**
-0.0314 -0.0342 -0.0356 -0.0376
Age65 0.0371%** 0.0172** 0.0192** 0.0187**
-0.00789 -0.0079 -0.00783 -0.0078
RaceNonWhite -0.0426%*** -0.0506%*** -0.0372** -0.0351**
-0.015 -0.0162 -0.0168 -0.0167
UnemploymentRate -0.00253 -0.00115 -0.00392
-0.00404 -0.00402 -0.00409
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InIncome 0.343* 0.162 0.103

-0.177 -0.186 -0.187
Farm 0.0830%** 0.0749%**
-0.0269 -0.0269
Service -3.55E-05 -0.0003
-0.00103 -0.00103
Homeownership -0.00998***
-0.0038
Observations 627 627 627 627
R-squared 0.306 0.458 0.473 0.477
Number of county 57 57 57 57
AIC -356.5 -507.7 -520.7 -523.2
BIC -329.9 -472.2 -476.3 -474.3

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
The findings presented in Table 21 indicate that, in the absence of instrumental variables,
the regression coefficient for the relationship between ASTHMA and O3 is negative and
statistically insignificant. In contrast, the results displayed in Table 22, which incorporate
instrumental variables, reveal a positive and highly significant regression coefficient for ASTHMA
and O3, with the second group exhibiting the lowest Akaike Information Criterion (AIC) value.
Furthermore, Table 23 provides the GMM results, demonstrating that all regression coefficients

are positive and highly significant, thereby corroborating the conclusions drawn from Table 22.

Table 20 Poisson Model without IVs between ASTHMA and O3

(1 (2 3) )
VARIABLES AsthmalOk AsthmalOk AsthmalOk AsthmalOk
03 0.000317 -9.50E-05 -0.000159 -0.000196
-0.000322 -0.000307 -0.000293 -0.000282
InPopulation -0.233 0.222 0.241 0.154
-0.208 -0.164 -0.172 -0.188
Popdensity -0.000132%** -8.93e-05%** -8.06e-05%** -7.62e-05%**
-1.51E-05 -1.49E-05 -1.51E-05 -1.71E-05
COVID -0.580%** -0.543%%%* -0.535% %% -0.527%*%*
-0.0103 -0.0111 -0.011 -0.0127
Age65 -0.025 1 #%** -0.00796* -0.00723* -0.00764*
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-0.00368 -0.00439 -0.00439 -0.00452
RaceNonWhite -0.0137 0.00149 0.00346 0.00336
-0.0103 -0.00708 -0.00724 -0.00755
UnemploymentRate 0.0114%** 0.0117%** 0.0107%**
-0.00203 -0.00201 -0.00204
InIncome -0.279%** -0.323%** -0.331***
-0.0646 -0.0649 -0.0697
Farm 0.0224*** 0.0192%**
-0.0086 -0.00834
Service 0.000360%** 0.000273
-0.000173 -0.000184
Homeownership -0.00304*
-0.00183
Observations 627 627 627 627
Number of county 57 57 57 57
AIC 3235.5 3220.0 3222.8 32239
BIC 3262.2 3255.5 3267.2 3272.8

Robust standard errors in parentheses

Table 21 Poisson Model with [Vs between ASTHMA and O3

ok ok p<0-01, *k p<0.05, % p<0'1

(D 2 (3) @)
VARIABLES AsthmalOk AsthmalOk AsthmalOk AsthmalOk
03 0.00359*** 0.00160*** 0.00167*** 0.00152%**
-0.000621 -0.000509 -0.000495 -0.00049
InPopulation -0.0336 0.287* 0.310%* 0.23
-0.186 -0.16 -0.167 -0.183
Popdensity -0.000143%** -0.0001071*** -9.40e-05%** -8.93e-05%**
-1.57E-05 -1.63E-05 -1.65E-05 -1.85E-05
COVID -0.584*** -0.549%** -0.542%** -0.535%**
-0.00987 -0.0108 -0.0106 -0.0125
Age65 -0.0229%*** -0.00838* -0.00768* -0.00801*
-0.00352 -0.00439 -0.00439 -0.00454
RaceNonWhite -0.0166* -0.00153 -2.75E-05 0.000135
-0.00986 -0.00727 -0.00746 -0.0077
UnemploymentRate 0.0117#** 0.0113%** 0.0104%***
-0.00199 -0.00197 -0.00203
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Inlncome -0.244%** -0.282%** -0.292%**
-0.0672 -0.0684 -0.0732
Farm 0.0198** 0.0172%*
-0.00865 -0.00834
Service 0.000346* 0.00027
-0.000179 -0.00019
Homeownership -0.00267
-0.00184
Observations 627 627 627 627
Number of county 57 57 57 57
AIC 3233.0 3220.9 32234 32248
BIC 3264.1 3260.8 32723 3278.0

Robust standard errors in parentheses

% p<0.01, ** p<0.05, * p<0.1

Figure 9 presents four unique sets of regression coefficients obtained from Table 22. Each

set demonstrates positive coefficients, with values spanning from 0.001 to 0.004. It is noteworthy

that the second set is distinguished by having the lowest AIC value, which holds particular

importance in this analysis.
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Figure 9 Regression coefficients between ASTHMA and O3
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Table 22 GMM Model with IVs between ASTHMA and O3

M 2 A3) 4)
VARIABLES InAsthmalOK InAsthmalOK InAsthmalOK InAsthmalOK
03 0.0112%** 0.00643*** 0.00539** 0.00461**
-0.00401 -0.0023 -0.00213 -0.00205
InPopulation 0.474 0.494%** 0.464%** 0.374%*
-0.318 -0.188 -0.175 -0.179
Popdensity -0.000184*** -0.000134%** -0.000122** -0.000113**
-6.32E-05 -5.08E-05 -4.84E-05 -4.65E-05
COVID -0.590%** -0.556%** -0.546%** -0.538***
-0.0185 -0.0168 -0.0166 -0.0169
Age65 -0.0182%** -0.00912%** -0.00848** -0.00848**
-0.00464 -0.00388 -0.00367 -0.0035
RaceNonWhite -0.0246%*** -0.00858 -0.0057 -0.00431
-0.00883 -0.00796 -0.00786 -0.00751
UnemploymentRate 0.00922%** 0.00971%** 0.00924%***
-0.00199 -0.00188 -0.00184
InIncome -0.196** -0.245%%* -0.268%**
-0.087 -0.0869 -0.0839
Farm 0.0156 0.0146
-0.0126 -0.0121
Service 0.000341 0.000286
-0.000483 -0.000464
Homeownership -0.00217
-0.0017
Observations 627 627 627 627
R-squared 0.745 0.861 0.877 0.888
Number of county 57 57 57 57
AIC -1021.2 -1397.7 -1472.7 -1527.9
BIC -994.6 -1362.2 -1428.3 -1479.0

Standard errors in parentheses ¥ p<0.01, ** p<0.05, * p<0.1

Model Selection
Like the model selection process discussed in Chapter Two, we employ the Akaike Information
Criterion to identify the most suitable model. AIC serves as a statistical metric for model selection,

providing an estimation of the relative quality of various statistical models in relation to a specific
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dataset. This criterion aids in discerning the model that achieves an optimal balance between fit
adequacy and model complexity. While AIC does not function as a hypothesis test, it offers a
structured methodology for comparing models and selecting the one that is most likely to
generalize effectively to new, unseen data. By synthesizing the findings from the 18 tables
presented in the preceding section, it is evident that the models with the lowest AIC values in each
respective table are Model 4 in Table 7, Model 2 in Table 10, Model 4 in Table 13, Model 2 in
Table 16, Model 4 in Table 19, and Model 2 in Table 22. These results are documented in the six

tables provided in the previous section.

Robustness Check

Robustness checks for GMM involve assessing the stability and reliability of GMM results by
altering model specifications or estimation techniques. This process is crucial for confirming that
the research conclusions are not unduly affected by specific decisions made during the analytical
process. Additionally, it serves to validate the chosen model specifications and estimation methods,
thereby confirming that the research outcomes are not merely a product of analytical choices. By
establishing robustness, the credibility and persuasive power of the research findings are
significantly enhanced. The preceding findings indicate that GMM is employed to assess the
efficacy of the Poisson control function model. An examination of the results presented in Tables
8,14, 17, 20, and 23 reveals that GMM serves as a highly effective instrument for stability testing
and has been instrumental in the context of this research. The results of GMM are comparable to
those of the Poisson model; however, the significance is not as robust as that of the Poisson model.

Nevertheless, this method can bolster the validity of the findings obtained from the Poisson model.

Bootstrapping Method

We use a bootstrap method to correct the biased standard errors and use 500 resampling in

bootstrap. We only choose the models with the lowest AIC values and the results are as follows,
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Table 23 Bootstrapping Method Results

Poisson IVs | COPD _AQI | ASTHMA AQI | COPD PM25 | ASTHMA PM25 | COPD O3 | ASTHMA O3

Model 4 Model 2 Model 4 Model 2 Model 4 Model 2
0.0183438 0.0114027 0.0128796 0.0092626 0.0057276 0.0015957
0.0032718 0.0012913 0.004289 0.001173 0.0022143 0.0005052

As shown in Table 24, using bootstrapping methods to correct standard errors in the Poisson model,
both the sign and significance level for key independent variables remain the same. The results of

this method show that the Poisson model is convincing and serves as an effective tool.

Discussion and Policy Recommendation

This chapter examines the empirical relationship between two categories of respiratory diseases
and three indicators of air quality. The analysis employs a two-stage methodology, beginning with
fixed effects panel regression in the first stage, followed by instrumental variable techniques and
a Poisson control function model in the second stage. A total of four distinct sets of control
variables are utilized to derive the regression results. The findings indicate a significant coefficient
for the proportion of electric vehicles relative to gasoline-powered vehicles, as well as a positive
correlation between the three air quality indicators and health outcomes. Additionally, the AIC
values for each variable set are compared, leading to the identification of the optimal set
characterized by the lowest AIC value. A comparative analysis of the Generalized Method of
Moments and Poisson control function models further validated the efficacy of the instrumental
variable approach. The standard variance was optimized through the Bootstrapping method, which
mitigates bias in the Poisson regression results. While the findings are largely consistent with the
initial hypotheses, several limitations persist. Firstly, the sample size is insufficiently large.
Secondly, there are gaps in the data, and other factors influencing respiratory diseases, such as
industrial and household pollution, have not been accounted for. Moreover, the instrumental
variables employed in the model require further validation, and the control variables necessitate

empirical data to assess their validity. Although the results generally support the hypotheses, future
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research is anticipated to utilize diverse datasets and sample sizes for similar investigations.
Furthermore, the Difference-in-Differences (DID) approach is recognized as a valuable empirical

research tool for this study.

As of 2024, the proportion of electric vehicles in California remains relatively low;
however, this study offers valuable insights for future research on electric vehicles. Policymakers
should acknowledge that, in the long term, the adoption of electric vehicles is an inevitable trend.
In regions of California with a high ratio of renewable energy, the market potential for electric
vehicles is expected to be substantial, particularly regarding health benefits. Consequently, the
government should implement additional policies and support mechanisms to encourage the

widespread adoption of electric vehicles.

Conclusion

This chapter provides a comprehensive introduction to the improvements in air quality resulting
from the adoption of electric vehicles in California and their potential health impacts. First, we
briefly review the research literature on the relationship between air pollution and health, as well
as the direct environmental impacts and indirect health effects associated with the implementation
of electric vehicles over the past decade. Currently, many scholars support the positive effects of
electric vehicles on both air quality and public health. Based on existing data and historical
literature, we propose two hypotheses. Next, we outline the stages of data introduction, model
establishment, and result interpretation. By employing a Poisson control function model with
instrumental variables, we obtained results that align closely with our hypotheses. The findings
indicate a significant positive correlation between three different air quality indicators and two
types of respiratory diseases. Additionally, by comparing the regression coefficients of four
distinct groups of control variables, we identify the model with the lowest AIC value. At the
conclusion of the article, we conduct a robustness check using the GMM method and optimize the

standard errors using the Bootstrapping Method.

In summary, this chapter encapsulates the essence of the entire dissertation and serves as a
bridge to the cost-benefit analysis presented in the next chapter. Due to incomplete data and model

biases, the conclusions drawn require further validation. Although the large-scale adoption of
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electric vehicles encounters numerous challenges—ranging from policy-related issues and
technical obstacles to local protectionism and political ideologies—humanity is striving to
embrace electric vehicles from the perspective of sustainable development, continuously fostering

conditions for better utilization of electric vehicles worldwide.

Appendices

Table A. Value for RateEV_Gas

F value AQI Model 1 PM25 Model 4 O3 Model 3
RateEV_Gas 8.53 7.67 4.17
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